Category Archives: clocks and watches

Mechanical clocks, mainly rotating pendulum clocks, the repair of which I document.

Selfmade Nixiclock

Loading

The fact that the topic of retro has become more and more of a trend in recent years has not escaped me either. The “Industrial” and “Steam” style has also found its way into many households. People put many things on the shelf again, which represent the robust technology and the appearance of the past decades. For example, LED lamps flicker in the rooms, which were visually modelled on the light bulbs of the Wilhelminian era. The brass lamp holders are held in place by a cable sheathed with fabric mesh. Instead of the carbon or tungsten filaments in the bulbs, modern LED filament works. Thematically corresponding to this style, mechanical watches and electric clocks with illuminated displays of all kinds, for example, are in demand again. In keeping with this trend, I have already reported on the VFD watches in older blog posts. (VFD = VaccumFLuoreszenzDisplay) Until the end of the 90s, for example, this display technology was still frequently used in video recorders, hi-fi devices and various radio alarm clocks. After that, LED and LCD technology was standard. Today, the small OLEDs are finding their way everywhere. As part of the Retro Revival, VFDs are assembled into watches in the form of single-digit display tubes. These watches are available as finished devices or as kits (grother.de). Since these display tubes are no longer manufactured and only old stocks (new old stock) are available, prices are also rising. But it is even worse in terms of price – a technical development from the 1920s is a display technology based on the principle of the glow lamp. In this case, in a glass flask filled with noble gas, a digit bent from wire is attached as a cathode, in front of a thin metal grid as an anode. If a voltage is applied, the noble gas begins to glow along the wire formed as a digit. Seen from the outside, this creates the impression of a luminous number. In such a tube, the digits from 0-9 are usually accommodated and for each digit there is of course a separate connection. Many of the readers will surely know this type of tube. It is called NIXIE – display tube (comes from the designation “Numeric Indicator eXperimental No. 1”

A watch with such display tubes is still missing in my collection. So I wanted to own one. But buying is easy – and also very expensive. So I decided to build a Nixie clock myself. It all started with a lengthy search for the tubes, because even for these you have to lay down a lot in the meantime. And I need at least six pieces, because my watch should also have a second display. So I searched the Internet on various platforms – and in the bay I found what I was looking for. There a board equipped with Nixie tubes was offered, which was broken out of some old device. The function of the board was given as “unknown” – but it was very cheap. The seller had two of them. So I risked it and bought the two boards equipped with five Nixies each.

The tubes were then successfully soldered out with some caution. The type of tube is the Z574M, for which you can also find the data sheets in the network and thus also has the socket circuitry.

With the help of the wiring, it can then be easily contacted and thus check digit by digit of each tube. The characteristics of the 574 are:

  • Anode ignition voltage: 150V
  • Anode burning voltage: 140V
  • Anode extinguishing voltage: 120V
  • Max anode voltage: 170V
  • Cathode current min: 1.5mA
  • Cathode current max: 2.5mA

With a suitable power supply unit, I was able to quickly set the necessary supply voltages for the functional test.

You can see here that the tube draws a current of 2.8mA at a burning voltage of just under 140V. This corresponds to an output of 392mW. So if I extrapolate and all six digits of the watch are continuously energized, then the power supply for the tubes must bring about 2.3W.

So the tubes already work. Now I can think about what the clock should look like and even more how I want to design it.

The idea is that a microcontroller should control all six tubes. I want to realize this with 8-bit 4094 shift registers, of which four bits each are used for a tube. These four bits from the shift register should then control the tubes via binary coded decimals (i.e. BCD). However, since the tubes have a connection for each digit, ten separate digit controls must be generated from the four BCD lines. This will be done by a CD4028. The IC CD4028 is a “BCD to Decimal Decoder”. To switch the relatively high voltages of the Nixies, the BCD decimal decoder will drive a suitable transistor. This is where the MPSA42 will do its job. This is an NPN bipolar transistor with a collector-emitter dielectric strength of 300VDC at a maximum collector current of 500mA. In order to be able to use the tubes as flexibly as possible, I have come up with the idea of designing a separate circuit board for each tube. These individual display boards should then be plugged into a main patine. So if a digit is defective, you can simply pull out the board in question and repair it. Then you don’t have to solder around the motherboard.

The microcontroller should find space on the motherboard. The low- and high-voltage supply and the shift registers are also to be accommodated on the mainboard. The display boards only carry the Nixie tube and its driver transistors and the BCD decimal decoder. By means of post connectors, they should be easy to plug into the motherboard. To make these formulations a little easier, I have made this sketch:

Based on this idea, I now began to draw the circuit diagrams. So it started with the display board on which the tube is located. The circuit design is very simple. Two opposite post connectors should give the board a stable hold on the motherboard. One of the connectors supplies the BCD decimal decoder (CD4028N) with the four data inputs and the 5V supply voltage for the logic. On the other side of the board, the “high voltage” is provided for the tube.

From this I could then simply create a layout and then produce it as a prototype as a board.

Nach dem Ätzen und Bestücken der ersten Platine und fünf Weiteren war der erste Schritt der Nixieuhr getan:

In order to test the first part of the work, I had a DEB100 digital experiment board available at my workplace. The following short video shows the test result:

After all six boards were equipped and tested, I had dealt with the planning of the motherboard. At the beginning, of course, there was again the creation of a circuit diagram. From an external 12VDC source, which should ideally be a simple plug-in power supply, the supply voltages had to be generated. On the one hand I needed a 5VDC supply for the microcontroller, the shift registers and the BCD decoders and on the other hand a “high voltage” of 140VDC for the Nixie tubes. The 5V supply was done quickly – here a 7805 linear controller should do its job. Since the power consumption of the digital components is relatively low, no complex measures were required here. The 7V difference on the 7805 at the few milliamperes he packed without great power dissipation heat dissipation. For the generation of the 140V I made a step-up converter with an MC34062 (Inverting Regulator – Buck, Boost, Switching) controller, which switches a 220uH inductor via a FET. Via a voltage divider with trimming potentiometer at the output, a voltage feedback can be sent to the comparator output of the controller and thus the output voltage can be adjusted. As a microcontroller, I always use Atmega328 and the like for most of my projects (due to the stock level :)). This is also the case here. The result is the following circuit diagram:

From this I made a layout again and etched and equipped a board again. However, this prototype test board was only a version with four digits. The reason was also that I did not have a larger raw board available 🙂

From this I made a layout again and etched and equipped a board again. However, this prototype test board was only a version with four digits. The reason was also that I did not have a larger raw board available 🙂

After various successful tests with the prototype board, I ordered professionally manufactured boards from the board manufacturer I trust. After assembling them, I then created a test program that could control all digits. A short test video is linked below:

The following photos show how the clock looks with the “beautifully” manufactured boards. To make the whole work even more nostalgic, I had the idea to mount the boards on a milled wooden panel. (Thanks to Gebhard for the woodwork). In order to keep the watch electronics permanently dust-free, I had a transparent Plexiglas hood made.

Sketch for the arcyl glass hood

As so often, I made the software with the Arduino IDE. To flash the microcontroller I use the AVRISP mkII Programmer. If somebody is interested in the code, I can also post it here on the blog.

 

Temperature sensor for IV-11 DCF melody

Loading

A functional update for the IV-11 DCF melody watch is available from gr-projects. It is a radio temperature transmitter. The special thing about it is, that the transmitter operating in the ISM band 433 MHz is equipped with a photovoltaic cell (solar cell). Depending on the version, a small rechargeable battery or a CR2032 button cell can be installed in the transmitter. The battery is thus supported by the solar cell in the sunlight or in the battery version it is charged during the day and then keeps the transmitter in operation over the dark time.

The assembly is easy. The kit consists of a transmitter and a receiver. The boards of transmitter and receiver are equipped with few components quickly. Here, however, some attention is required and you should read the documentation carefully, because due to the lower number of kits, the boards are manufactured without component imprint and solderstop.

transmitter module

The radio modules themselves are completely pre-assembled (SMD) and only need to be soldered into the corresponding circuit boards. Optionally, a trim potentiometer can be connected in parallel to the temperature sensor (NTC) for adjustment purposes. The transmitter, like the receiver, is installed in a small PVC housing. Here, except for a 3mm drill hole and possibly some silicone for the sealing of the solar cell (for operation outside the window sill) no further tools are needed.

transmitter complete with PV-cell

To connect the receiver to the clock, make a few minor changes to the clock’s mainboard. First, the microcontroller is replaced – logically – because there is indeed a new program that then displays the temperature in the date line. A resistor is removed, one is added and a jumper can be swapped. The connection between the clock’s motherboard and the radio receiver is made with a piece of cable. Three lines are required (GND, + 5V and the data signal from the receiver controller to the clock controller). That’s it then already. The clock can go into operation. After a few seconds, the received temperature is displayed in the tube.

receiver in it´s case

 

A video how to solder the circuit is available here:

VFD clock with date, day of the week and sound

Loading

I received a new kit for vacuum fluorescence display from Günter (gr-pojects). Thanks a lot!

It is a clock with Type IV-11 vacuum fluorescent display tubes for hours, minutes and seconds, and an IV-18 tube for date display, and IV-3 for displaying the day of the week. The clock consists of a mainboard with power supply, CPU, MP3 module and driver blocks for the tubes. The time is set and synchronized via an externally connected DCF-77 receiver. Later, the board will be extended with a real-time clock circuit. The power supply for the entire circuit comes from a small plug-in power supply with 12V / 1.2A. The total power consumption is about 450mA. As a special feature, the clock has a small MP3 sound module with MicroSD card slot. This receives from the microcontroller via the serial interface every quarter of an hour a corresponding command to play an MP3 file. Thus the quarter of an hour is signaled with a “gong beat”, half an hour with two and three quarters of an hour with three “gong strikes”. At the full hour, the corresponding time is announced.

The entire circuit is built into an aluminum-acrylic housing. All fittings are milled and screwed. A video of the structure and the function can be seen below:

torsion pendulum clock

Loading

A patience-related work is the restoration or repair of a rotary pendulum clock.

A rotary pendulum clock is, as the name implies, a mechanical clock that generates the clock from a pendulum rotating around its own axis. The vibration energy is transmitted here with a torsion spring (Horolovar spring), ie a very fine steel wire special alloy. IMAG1268_1 The rotary pendulum clock is also called annual clock, as due to the very slow oscillation and corresponding mechanical implementation of the escapement, a lift of the spring accumulator only once in 300-400 days is necessary.

Of course, this also requires a certain precision of the mechanical components. If something is not set correctly here, the clock will switch off after a few minutes. Even the fine adjustment of the accuracy requires some patience. And just like a clock has done to me. In an online auction house, I have a cheap ‘defective’ but purchased from the components ago complete rotary pendulum clock and immediately started to disassemble and clean the parts.

https://www.youtube.com/watch?v=yFbs3kSGvvc

IMAG1265
Knurled screw for the pendulum diameter

 

IMAG1266
suspension spring

After this work we went back to the assembly. The Horolovar feather was replaced by a new one. Now we went to the adjustments. First, I had to find out how many pendulum oscillations, more precisely half vibrations, should make the clock in one minute. At my watch (a Kundo) these are eight beats. The easiest way is to use a stopwatch to measure the time it takes to reach the 8th half-cycle. For example, if the measured time is over one minute, the watch will run too slowly and must be adjusted with the thumbscrew (the one that changes the position of the pendulum weights in diameter). Turning the thumbscrew clockwise will make the clock slower and counterclockwise faster, of course.

Hemmung mit Ankerplatte
Escapement with anchor plate

It should be a precision of +/- 1 minute per month possible. So a deviation of 12 minutes a year. Of course this requires optimal environmental conditions. (constant temperature and humidity, as well as a firm, vibration-free state)