Ergebnisse zur Blogstatistik

Vor einigen Monaten habe ich das kleine Umfragetool zur Erfassung der Altersgruppen der Besucher meiner Blogseite eingerichtet. Da jeden Tag ein paar Mails mit Umfrageergebnissen eintrudeln, dachte ich, es ist an der Zeit, einmal einen Status zu veröffentlichen. In der Umfrage gibt es vier Altersgruppen (unter 20, 21 bis35, 36 bis 50 und größer 50 Jahre), sowie die Möglichkeit das Geschlecht bekanntzugeben.

Das Ergebnis sieht mit heutigem Tag, wie folgt aus:

An der Umfrage haben insgesamt 378 Personen teilgenommen. Im Detail verteilen sich die Altersgruppen wie folgt:

  • Gruppe „kleiner 20 Jahre“       41 Personen
  • Gruppe „21 bis 35 Jahre“      129 Personen
  • Gruppe „36 bis 50 Jahre“         99 Personen
  • Gruppe „größer 50 Jahre“    109 Personen

Der Anteil der weiblichen Blogleser sieht wie folgt aus:

  • Gruppe „kleiner 20 Jahre“       36%  (15 Personen)
  • Gruppe „21 bis 35 Jahre“           0%   (  0  Personen)
  • Gruppe „36 bis 50 Jahre“        10%   (10 Personen)
  • Gruppe „größer 50 Jahre“      18%   (18 Personen)

Anzumerken ist noch, dass das Statistiktool auch von einigen Spammern benutzt wurde um im Kommentar Feld Spam-Links zu posten. Diese wurden jedoch von den Filtern entfernt und scheinen in der Statistik nicht auf.

Homematic Nachrichten pushen mit Telegram

Mit der Homematic CCU ist es ja schon lange möglich, Nachrichten aus Systemereignissen heraus zu generieren und per E-Mail zu versenden. Ein einfaches Beispiel hierfür ist die Bestätigung der Alarmanlage. Wird diese scharf oder unscharf geschaltet, so kann der Status als Email versendet werden. Oder hat man Umweltdatensensoren verbaut, so kann man sich auch die Daten, wie Temperatur, Luftfeuchte etc. senden lassen. Dazu muss einfach nur das Email-Plug-In unter Zusatzsoftware installiert und eingerichtet werden. Die Nachrichten werden dann per Script Aufruf versendet. Jedes Mal, wenn der Ziel-Email-Client, zum Beispiel am Smartphone, die Nachrichten abruft, ist man wieder informiert.

Es muss aber nicht unbedingt die E-Mail-Lösung sein um Nachrichten zu versenden. Eine weitere Möglichkeit ist der Messenger „Telegram“. Er ist den Nachrichten Messengern WhatsApp, Signal, etc. ähnlich und versendet per Push-Service. Der Versand unterschiedlichster Daten ist hier möglich. Bilder, Videos und Audiodateien können genau so einfach wie Textnachrichten versendet werden. Um einen den Telegram Dienst mit der Homematic nutzen zu können, muss man sich der freien Telegram API bedienen. In den folgenden Zeilen zeige ich, wie ich ein für mich funktionsfähiges System aufgebaut habe, um von der Homematic CCU Nachrichten und IPCam-Bilder an ein Smartphone mit installiertem Telegram Messenger zu senden.

In dem Beispiel beschreibe ich die Installation und Einrichtung auf einem Android System. Beginnend mit dem Download der APP „Telegram Messenger“ aus dem Google Appstore kann derselbe dann installiert und gestartet werden. Nach dem registrieren der Telefonnummer sollte die Software dann auch schon bereit sein.

Einrichten des Bots:

In der rechten, oberen Ecke des Bildschirms ist das Lupensymbol für die Suche zu sehen. Das ist anzuwählen, um ein Eingabefeld zu erhalten. In dieses Feld ist nun BotFather einzugeben. Das ist quasi das Administrationstool für das Erstellen und Einrichten von Bots. Unter einem Bot (von englisch robot ‚Roboter‘) versteht man ein Computerprogramm, das weitgehend automatisch sich wiederholende Aufgaben abarbeitet, ohne dabei auf eine Interaktion mit einem menschlichen Benutzer angewiesen zu sein.( Quelle: Wikipedia)

Suchen des BotFather

Ist der BotFather gefunden, dann kann der einfach angeklickt werden und es öffnet sich ein Fenster.  Um die Einrichtung des eigenen Bots zu starten, ist in der Nachrichtenzeile folgendes Kommando einzutippen:

/start

Jetzt kommt als Antwort eine Liste mit Befehlen, die für die Bot-Einrichtung und Konfiguration nützlich sind. Um nun einen neuen Bot zu erstellen ist

/newbot

einzugeben. Als nächstes ist ein Name für den Bot auszuwählen. Hier habe ich als Beispiel CCU gewählt. Sollte der Name bereits vergeben sein, dann einen anderen wählen. Das gilt ebenso für den Benutzernamen, der mit „_bot“ zu enden hat. Hier habe ich iretro_bot gewählt.

Ist der Name gewählt und gültig, so kommt als Antwort eine Meldung mit einem Token, der in der Regel 45 Zeichen lang ist. Dieser Token ist zu kopieren oder abzuschreiben. Er ist der Schlüssel für den Bot. Die Arbeiten am Smartphone sind nun soweit abgeschlossen und es geht am PC weiter. Im Browser (am besten Firefox) ist die Telegram Website aufzurufen. web.telegram.org ist der Link zu Website. Diese Schritte dienen dazu, neben dem Token auch noch die ChatID zu erhalten, die in weiterer Folge in den Homematic Skripten benötigt wird. Um sich im Webbrowser anmelden zu können, ist die zu Anfang in der App registrierte Telefonnummer einzugeben. Ist die Nummer eingegeben wird auf das Smartphone ein Anmeldecode gesendet. Mit dem kann die Telegram Session im Browser gestartet werden. Jetzt sollte im Browser Telegram auch der iretro_bot per Suche zu finden sein. Ist er gefunden, dann ist er mit „STARTEN“ zu öffnen und irgendeine beliebige Nachricht einzugeben. Das Eingeben einer beliebigen Nachricht ist wichtig um dann auch die ChatID erhalten zu können. Ist das geschehen, dann ist in der Adresszeile desselben Browserfensters der folgende Link einzugeben:

https://api.telegram.org/hier_den_45_Zeichen_langen_APItoken_eingeben/getUpdates

und mit Enter bestätigen. Jetzt sollte im Browser in etwa folgendes zu sehen sein: (Tab JSON ausgewählt) Den Inhalt der Website habe ich in die untenstehende Tabelle kopiert. (die originale ID wurde natürlich geändert…)

Nun kann durch Eingabe in die Browserzeile eine Testnachricht vom PC an das Smartphone gesendet werden.

https://api.telegram.org/botAPITOKEN/sendMessage?chat_id=123456789&text=Hallo das ist ein Test

Nach Bestätigen erscheint die Nachricht in der Telegram App am Smartphone und alles hat geklappt. Für alles Weitere wird nun nur mehr der API-Token und die chatID benötigt.

Homematic und Telegram

Jetzt ist soweit alles für den Einsatz von Telegram mit der Homematic vorbereitet. Meine Beispiele hier beziehen sich auf eine CCU2. Als Addon muss die aktuelle Version des CUxD auf der CCU installiert sein. (Zum Zeitpunkt des erstellen des Blogbeitrages ist es 2.3.0). Der CUx-Daemon ermöglicht es unter anderem, per Skript auf das Linux System der CCU zuzugreifen und stellt somit eine universelle Schnittstelle zu anderen Systemen dar.

Die einfachste und am schnellsten realisierbare Anwendung mit Telegram ist, ein von der Homematic getriggertes Skript zu starten, das eine PUSH-Nachricht versendet. Dazu erstellt man in der CCU ein neues Programm und wählt zuerst unter Bedingung einen „Trigger“ aus. Mit „Trigger“ ist zum Beispiel eine Tastereingabe, eine Bewegungserkennung des Bewegungsmelders, oder auch einfach nur das Auslösen eines beliebigen Sensors gemeint. Das sollte für einen HomeMatic Benutzer auch kein Problem darstellen. Dann wählt man als Aktivität Skript aus und öffnet das Scripteingabefenster.  Das folgende Code-Beispiel sendet eine Nachricht an das Handy wenn bei der HomeMatic der gewählte Trigger ausgelöst ist und das Script gestartet wird:

!Variablen definieren
string msg = "Das ist eine Testnachricht von der CCU";
string chatid = "123456789"; !das ist die chatid
string botAPI = "987654321:ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi"; !und das ist die BOT API id

!Textnachricht versenden
dom.GetObject("CUxD.CUX2801001:1.CMD_EXEC").State("extra/curl -s -k https://api.telegram.org/bot"#botAPI#"/sendMessage -F text='"#msg#"' -F chat_id="#chatid);

 

Die ChatID in dem Beispielscript und auch die botAPI ist hier nur symbolisch angeführt. Wären da reale IDs angeführt, dann würden eure Versuche alle als Nachrichten auf meinem Handy landen. 🙂 Diese beiden IDs sind also durch die vorher ermittelten zu ersetzen.

 

Versenden von Kamerabildern

Es geht aber noch besser. Viele User haben neben der HomeMatic CCU auch noch IP-Kameras im Einsatz. Da bietet es sich doch an, den Trigger der HomeMatic und seine Webanbindung für das Versenden der IP-Kamera Bilder zu verwenden. Denn Telegramm kann neben Textnachrichten auch Bilddateien versenden.

Um das zu realisieren muss die IP Kamera in der Lage sein, einen Snapshot per http – Aufruf zu erzeugen. Das sollte bei den meisten Kameras möglich sein. In diesem Beispiel habe ich eine Dlink DCS-932 und eine Vivotec FD81xx Domkamera getestet. Es klappt mit beiden.

Hier die grundlegenden Snapshotaufrufe der Kameras:
DLINK:
https://benutzername:passwort@ip_der_kamera/image/jpeg.cgi

VIVOTEK:
https://benutzername:passwort@ip_der_kamera/cgi-bin/viewer/video.jpg?

Als nächstes muss sichergestellt sein, dass die HomeMatic nach dem Aufruf der Snapshot-Links die von der Kamera gelieferten Bilder auch irgendwo im Dateisystem der CCU speichern kann. Hier hilft der CUx-Daemon wieder weiter. Ich speichere im /tmp Ordner das Bild der Kamera unter dem Dateinamen „cambild.jpg“

CUxD Startbildschirm

Nach dem Aufruf desKameralinks über das unten gelistete Script sollte die Datei im /tmp Ordner zu sehen sein.

/tmp Ordner

Eine Kontrolle des Inhaltes der Datei „cambild.jpg“ kann einfach durch Doppelklicken durchgeführt werden. Das Bild sollte dann im CUxD Fenster zu sehen sein.

Kamerabild im CUxD Fenster

Das folgend gelistete Script in einem neu erstellten HomeMatic Programm kann nun durch Aufruf das Kamerabild abholen und versendet es als Telegram Push Nachricht.

string picture = "/tmp/cambild.jpg";  !das ist der Pfad in dem die Bilddatei erzeugt und gespeichert wird
string chatid = "123456789";        !das ist die chatid
string botAPI = "987654321:ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi";  !und das ist die BOT API id

!Kamera aufrufen und snapshotdatei in /tmp/ anlegen und als datei cambild.jpg speichern
dom.GetObject("CUxD.CUX2801001:1.CMD_EXEC").State("wget --auth-no-challenge -O /tmp/cambild.jpg 'https://user:passwort@000.000.000.000:80/image/jpeg.cgi?profileid=1'");

!Kamerabild per Telegram versenden
dom.GetObject("CUxD.CUX2801001:1.CMD_EXEC").State("extra/curl -s -k https://api.telegram.org/bot"#botAPI#"/sendPhoto -F chat_id="#chatid#" -F photo='@"#picture#"'");

Basketball bambino Spielekonsole

Aus dem Jahr 1979 stammt dieses Exemplar, eine Spielekonsole mit dem Titel „BASKETBALL“.  Es handelt sich dabei um ein Tabletop-Gerät mit einem VFD (Vakuum-Fluoreszenz-Display) als Bildschirm für die Spielfeldanzeige. Das Gerät trägt das Label „bambino tm“ als Logo. Bambino ist (oder war) ein Japanischer Hersteller, der hauptsächlich elektronische Handheldspiele hergestellt hat. Zu den Titeln zählen unter anderen: Baseball, Basketball, Black Jack, Boxing, Football, ICE Hockey, Safari, Soccer, UFO Master Blaster und Horse Racing. Die Firma bambino wählte dabei immer ein auffälliges und eher unübliches Gehäusedesign. Diese Spielekonsole habe ich mit zwei weiteren Geräten aus der Rubrik „Retro Spielzeug“ wieder einmal nach einer online Recherche auf Flohmarktportalen gefunden.

Im Inneren des Gerätes sind Platinen mit dem Aufdruck „EMIX-CORP ET-05“ verbaut. Insgesamt sind drei Platinen verbaut:

  • ein Board mit den Kontaktflächen für die Tasten, die über Gummimembrane betätigt werden
  • ein kleines Board mit den Aus/Ein und Spielemodus Wahlschaltern
  • die Hauptplatine, auf der die Spannungserzeugung, das VFD Display und die CPU verbaut sind
4Bit Prozessor

Das Herz dieser Spielekonsole ist der HD38750A08 ein Mikrochip von Hitachi Semiconductor. Dieser Mikrochip ist ein 4Bit PMOS Mikrocomputer, mit eingebautem ROM, RAM, Timer/Counter und I/Os. Durch die eingesetzte PMOS Technologie sind die I/Os im Stande, direkt die Hochspannungseingänge der VFD – Anzeigen anzusteuern. Die Logik des ICs wird mit 10V versorgt und die insgesamt 32 Ein- und Ausgangspins können maximal 49V schalten ohne zerstört zu werden. Der Takt für den Prozessor wird mit einem internen RC – Oszillator erzeugt. Das RAM hat eine Kapazität von 80 Digits bei 4 Bit pro Digit, also 320 Bit. Der ROM Bereich besteht aus dem Programm-ROM und dem Pattern-ROM. Der Programmspeicher ist 1024 Worte bei 10bit pro Wort, also 10240 Bit groß und der Pattern – Speicher kann 64 Worte bei 10 Bit pro Wort, demnach also 640 Bit halten.

Spannungsversorung für die CPU

Den Strom bekommt die Konsole von vier Stück AA-Zellen mit je 1,5V oder optional auch von einem extern anschließbaren Netzteil. Eine kleine Wandler-Schaltung am Mainboard sorgt für die Betriebsspannungen des Prozessors und der VFD-Anzeige.

Sogar Töne kann die Konsole beim Spielen von sich geben. Auch wenn es nur die Piep-Töne eines Piezo Lautsprechers sind. Am Display sind die Spieler in allen Positionen als ansteuerbare Elemente vorhanden. Die „Körbe“ des Basketball Spiels sind, sowie auch Spielfeldmarkierungen, in der Gehäuseeinfassung des Displays dargestellt.

Spieler und Bälle als ansteuerbare Displayelemente

Im Rahmen der Reinigungsarbeiten konnte ich auch die Elektronik überholen und die teils gebrochenen Gehäusekomponenten instand setzen. Seife, warmes Wasser und eine Bürste leisteten hervorragende Dienste um den Schmutz der Jahre zu entfernen.

geöffnetes Gehäuse
Platine mit Tastaturkontakten

Das Video zeigt das Gerät in Funktion:

Schuco Micro-Racer

Schuco 1043 Micro-Racer

Ein weiteres Exemplar vom Flohmarkt aus der Rubrik altes Spielzeug, ist das Modell Nr.1043 des Herstellers Schuco. Es handelt sich dabei um einen Rennwagen (Micro-Racer Miniaturrennwagen).  Dieses Modell wurde ab dem Jahr 1967 hergestellt und vertrieben und stellt einen Mercedes Benz 2.5L4 dar. Es ist mit einem Federspeicher Antrieb (Werkantrieb) ausgestattet, der mit einem kleinen Steckschlüssel aufgezogen wird. Über einen Hebel (Bremshebel) in der „Fahrerkabine“ ist das Aktivieren des Werkantriebes nach dem Aufziehen möglich. Mittels einer Gewindestange, die gleichzeitig den Auspuff des Modells darstellt, kann ein sehr feiner Lenkwinkel eingestellt werden. Somit ist es möglich mit dem Modell Präzisionsfahrten zu machen. Die Front des Audtos besteht aus einem Anstoßdämpfer aus Gummi. Ebenso sind sie Reifen aus Gummi.

Das Modell habe ich in einem „gut gebrauchten“ Zustand bekommen. Das bedeutet, der Lack ist ziemlich ab. Leider fehlt auch der Schlüssel zu Aufziehen des Federwerkes. Das gute Stück hat also gelebt und somit auch reichlich „Patina“.

Ich habe mich entschlossen, den Micro Racer ein wenig aufzufrischen und zu restaurieren. Zumindest der Lack sollte in einem schöneren Glanz erscheinen und den Zustand und die Funktion der Mechanik konnte ich mir dann auch ansehen. Die zwei Metallhälften werden von zwei Schrauben zusammengehalten und sind schnell entfernt.

Im Bild oben ist zu erkennen, dass die Zähne des kleinen Getrieberitzels schon stark beschädigt (eingelaufen) sind. Das ist nur durch einen Austausch der Welle mit den Zahnrädern zu beheben. Durch Einfügen einer Unterlegescheibe habe ich versucht das Spiel der Welle in axialer Richtung zu nutzen und die Welle soweit zu verschieben, dass die Zahnräder im nicht beschädigten Bereich ineinandergreifen. Das funktioniert zwar, ist aber sicherlich keine langlebige Lösung, wenn man mit dem Auto auch spielen wollte. Für den Aufenthalt in der Vitrine ist es aber allemal ausreichend. Als nächste kümmerte ich mich um die Optik und habe dafür die Einzelteile der Karosserie zuerst einmal mit Wasser und Seife und einer Bürste und danach mit Isopropanol gereinigt. Dann habe mit den drei Farben, Silber, Schwarz und Rot die Teile nachlackiert.

Technische Informationen zum Modell:

Hersteller: Schuco
Kategorie: Blechspielzeug, Micro_Racer
Baujahr: ca 1967
Modell /Artikel Nr: 1043
Abmessungen: 9x5x3,5 cm
Bereifung: Gummireifen
Antrieb: Werkantrieb mit Aufziehkurbel /- schlüssel

Blechspielzeug Motorrad

Blechmotorrad

Dieses Stück, ein Motorrad aus Blech, ist mir bei einem Flohmarktbesuch aufgefallen. Ich kenne mich zwar mit Blechspielzeug nicht aus, aber es sah alt und interessant aus, der Preis passte – also musste ich es mitnehmen.  Nach einigen Recherchen im Netz, wurde ich ein wenig schlauer und habe zumindest herausgefunden, dass es sehr viele Blechspielzeughersteller gibt, bzw. gab. Die Herstellung von Blechspielzeugen begann offenbar schon im 19. Jahrhundert und wurde bis nach dem zweiten Weltkrieg betrieben. Auch heute gibt es noch Firmen, die dem Nostalgie-Boom folgen und wieder Blechspielzeuge im Retrostil herstellen. Wobei „Schuco“ und „Wilesco“ wohl zu den bekanntesten Fabrikanten zählen.

Das Modell, das ich erworben habe, ist mit einem Friktionsmotor, also nichts anderes als einem Schwungrad mit Untersetzungsgetriebe ausgestattet. Wird das Spielzeugmodell geschoben, so wird die Energie, die über die Reibung (Friktion) der Gummiräder in eine mechanische Drehbewegung umgesetzt wird, in das Schwungrad übertragen. Beendet man das „Anschieben“ des Modells, so sorgt wiederum die im Schwungrad gespeicherte kinetische Energie für das Antreiben der Gummiräder und somit das Weiterfahren des Modells.  Umständlich erklärt was eigentlich jeder kennt…

Markierung „L“ evtl. Herstellerlogo ?

Leider konnte ich keine genaueren Informationen zu dem Modell hier finden. Die Markierung „L“ könnte ein Herstellerlogo sein. Aber ich vermute, dass es sich um einen Nachbau (evtl. aus China) handelt und auch nicht besonders alt ist. Falls jemand zu dem Modell oder Hersteller oder auch zum Alter genauere Informationen hat, würde ich mich sehr freuen und könnte den Beitrag erweitern.

 

 

Reparatur am Handymainboard

Dieser kurze Beitrag ist keine Reparaturanleitung. Er zeigt nur, wie ich in diesem einen Fall ein IPhone Smartphone vor der Mülltonne bewahrt habe. Es handelt sich also um ein Apple IPhone, genauer gesagt um ein älteres IPhone 6. Die Fehlerbeschreibung war folgende: „Das IPhone findet kein Netz, egal mit welcher SIM-Karte“.

Über diesen Fehler findet man viele mögliche Ursachen und Meinungen im Netz, von schlecht kontaktierten BGA-ICs bis hin zu verstaubten und somit schlecht leitenden Kontaktflächen ist alles zu finden. Also, dachte ich, schau´ ich einfach einmal nach und demontierte das Gerät. Als das Mainboard dann frei lag konnte ich ein auf das Mainboard aufgestecktes Platinchen entdecken, das laut Netz die WLan Antenne sein sollte. Dieses Platinchen sollte mit vier Koaxialsteckern auf dem Mainboard befestigt sein.

 

neuer IPhone 6 Antennenprint mit vier Koaxialbuchsen

Jedoch war hier etwas eigenartig. Eine der vier Anschlussleitungen war verdreht und unter dem Mikroskop betrachtet, konnte man einen Riss in der Platine erkennen. Bei weiterer Betrachtung war auch zu erkennen, dass das Gegenstück des Koaxialsteckers vom Mainboard abgerissen war und Teile davon im Stecker der Antenne steckten. Also ein ziemlich eindeutiger Fall, dass hier etwas nicht mehr funktionieren kann. Und noch eindeutiger, dass hier schon jemand herumgebastelt hat und scheinbar mit einem Werkzeug auf die Antennenplatine gedrückt hat. Eine vom Mainboard abgerissene Buchse ist allerdings keine gute Ausgangssituation, denn wenn auch Stücke der Leiterbahnen abgerissen wurden, wird eine Reparatur nicht mehr vernünftig möglich. Also habe ich zuerst einmal vorsichtig die verbleibenden Antennenstecker gelöst und die Antenne entfernt.

Abgerissene Koaxialbuchse (rechts oben im Bild) links auf der Platine sind die Lötpads der Buchse zu erkennen

Im Bild ist im linken Bereich der Platine zu erkennen, wo die Koaxialbuchse befestigt war. Unter dem Mikroskop habe ich die restlichen Teile des Steckers entlötet und den Bereich gereinigt. Glücklicherweise waren keine Lötpads abgerissen oder fehlten. Eine neue Buchse konnte also eingebaut werden. Aber schon tauchte das nächste Problem auf. Woher sollte man die neuen Koaxialbuchsen bekommen? Meine schnellste Quelle für ein Ersatzteil war ein anderes defektes IPhone Mainboard das als Spender diente.

Koaxialbuchsen im Größenvergleich (Kantenlänge der Buchse ca. 1x1mm)

Die Teile waren schnell entlötet – das geht am besten mit einem fein dosierten Heißluft Lötkolben und etwas Flussmittel – und konnten auf wieder auf dem Mainboard platziert und festgelötet werden. Mit einem geeigneten Mikroskop lässt sich das problemlos realisieren.

Koaxialbuchsen in der Vergrößerung
Stereomikroskop
Mainboard am „Operationstisch“
die neuen Buchsen sind montiert

Der Sicherheit halber habe ich beide Buchsen im Bereich des Defektes ausgetauscht. Jetzt musste nur noch die gebrochene Antennenplatine erneuert werden und schon stand dem Zusammensetzen des Smartphones nichts mehr im Weg. Die Antennenplatine ist über das Netz auf diversen Versandseiten einfach und für wenige Euros zu finden.

Nach dem Zusammenbau und der Inbetriebnahme war schnell ein positiver Reparaturerfolg zu erkennen. Das Phone buchte sich in die Provider Zelle ein und funktionierte wieder. So wurde wieder ein Gerät vor der Mülltonne gerettet…

Universum SK992

Wieder ein Stück aus meiner Jugendzeit ist die Radio- Fernseher Kombination von Universum.  Das Modell nennt sich SK992 und wurde im Jahr 1968/69 hergestellt und vermutlich bis Mitte der 70iger Jahre verkauft. Diese zwei Modelle hat meine Lebensgefährtin aufgespürt und mir geschenkt, nachdem ich das Gerät in einem Museum in einer Vitrine gesehen und ihr gleich von meinen Erinnerungen mit diesem Modell erzählt habe. Die beiden Geräte waren teilweise defekt und sanierungs- bzw. reparaturbedürfig. Aber, so dachte ich mir, wenn zwei Geräte vorhanden sind, dann wird die Chance geeignete Ersatzteile aus einem der beiden als Spender zu entnehmen, doch ziemlich groß sein.

Kurz zu den technischen Daten des SK992:

  • er wurde in Deutschland im Auftrag der QUELLE GmbH (Universum) Fürth und Nürnberg hergestellt. Der Hersteller ist das japanische Unternehmen Asahi Radio Mfg. Co., Ltd., der das Gerät auch selbst unter der Bezeichnung Crown 7TV-4 verkaufte.
  • Herstellung / Verkauf von 1968 bis ca. 1975
  • abgesehen von der Bildröhre ist das Gerät volltransistorisiert und ist mit 33 Transistoren ausgestattet.
man beachte die Bezeichnung „Volltransistorisiert“ 🙂

 

  • Der TV-Empfänger wird mit einem Trommeltuner abgestimmt und kann analoge PAL Signale im VHF und UHF Band empfangen. VHF CCIR Band I + III Norm B
    UHF-Abstimmrad nach CCIR G(H), TV-Kanäle: VHF: Ch 2-12; UHF: Ch 21-68;
  • die SW – Bildröhre 190CB4 hat eine Diagonale von 18cm. Sie ist indirekt mit einer Heizspannung von 12V beheizt.
  • der Radioempfänger arbeitet nach dem Superheterodyn Prinzip. Per Umschalter kann zwischen TV und Radio hin- und hergeschaltet werden. MW 520 – 1605 kHz mit Ferritantenne
    UKW 88 – 108 MHz mit Teleskopstabantenne
  • ein dynamischer Oval Lautsprecher sorgt für die Tonausgabe und ist mit 1W belastbar
  • die Energieversorgung kann entweder über 220V Netzspannung oder über eine 12VDC Buchse durchgeführt werden. An die 12VDC Buchse kann ein separates Akkupack angeschlossen werden, das mit einer einfachen internen Ladeschaltung aufgeladen wird. (Umschaltung an der Geräterückseite zwischen Netz/Batt und Laden)
  • das Material des Gehäuses besteht aus thermoplastischem Kunststoff und hat die Abmessungen 240 x 200 x 210 mm bei ca. 4.8 kg
  • die Leistungsaufnahme beträgt 14 W bei Netzbetrieb und 10,5 W bei Batteriebetrieb

Nun zur Reparatur bzw. Restauration:

Seitenansicht des Innenlebens

Eines der beiden Geräte war vom optischen Zustand des Gehäuses noch sehr gut in Form. Jedoch technisch zeigte das Gerät keinerlei Funktion. An der Netz-AC Versorgung war bei 240V AC ein Strom von knapp einem Ampere zu messen. Das war eindeutig zu viel, denn das Gerät sollte eine Nennleistung von in etwa 14W bei Netzbetrieb haben. Es zeigte sich, dass der Verbraucher an der Primärseite des Netztransformators einen Kurzschluss hatte. Das bestätigte sich auch im Versuch, das Gerät über eine 12V DC Quelle zu versorgen. Das zweite Gerät funktionierte technisch teilweise (Radio und TV startete, aber die Bildgeometrie und Helligkeit war katastrophal. Auch das Gehäuse war in einem schlechten Zustand. Die Gehäuseteile waren stark verbeult und gerissen. Die innenliegenden Platinen waren teilweise auch an den Befestigungspunkten gebrochen. Dieses Gerät hatte mit ziemlicher Sicherheit schon einen Sturz überstehen müssen, oder es ist etwas darauf gefallen. So stand der Beschluss schnell fest -> das wird der Teilespender.

Die Fehler waren schnell gefunden. Der Netzgleichrichter hatte einen Kurzschluss und die Schaltung des Längsreglers arbeitete nicht. Grund dafür waren die Transistoren T30 und T31 (ein 2SB337 bzw. ein 2SB77)

Treibertransistor für den Zeilentransformator

Auch die Ansteuerung des Zeilentransformators arbeitete nicht, da auch der Treiber (2SB468) defekt war. Dank des Spenders waren diese Teile zum Großteil auch noch funktionstüchtig vorhanden und konnten eingebaut werden.

Spannungsregegelung

In weiterer Folge habe ich die Elektrolytkondensatoren im Bereich der Spannungsregelung und Stabilisierung erneuert. Auch die Elkos der Schalkreise der Bildröhrenansteuerung und -ablenkung wurden getauscht.

die 50 Jahre alten ELkos
die nagelneuen Elkos

Nach dem Reparieren und tauschen der defekten Komponenten wurde ein kleiner Probelauf gestartet und das Gerät einmal in Betrieb genommen. Im ersten Anlauf habe ich die 12V DC mit einem Labornetzgerät mit einstellbarer Strombegrenzung bereitgestellt. Sowohl im TV und Radiomodus gab es keine Kurzschlüsse mehr und es „rauchte“ auch nichts. Die Stromaufnahme im TV Modus lag bei 12V und bei mittlerer Helligkeit des Bildrohres bei ca. 600mA was nach Ohm einer Leistung von 7.2 Watt entspricht. Das ist weniger als die Werksangabe, aber auch einfach nachzuvollziehen, denn die Bildgröße und -geometrie stimmte auch noch nicht.

erster Probelauf

Der nächste Schritt war das Überprüfen und Einstellen der internen Spannungen. Die Bild Lage und Geometrie sollte danach folgen. Also habe zuerst den Spannungsregler auf seinen Nennwert eingestellt. Im Bild oben war die Betriebsspannung bei ca. 9.5V – daher auch das „kleine“ Bild am Schirm. Um die Schräglage des Schirmbildes zu korrigieren habe ich einfach die Ablenkeinheit am Röhrenhals gerade gedreht und wieder fixiert.

Bildröhre 190CB4
Bildröhre mit Ablenkeinheit

Bei dieser Gelegenheit konnte ich die Röhre auch ordentlich reinigen und sie optisch wieder in einen Neuzustand versetzen. Das habe ich übrigens auch während der Reparaturarbeiten mit allen Platinen, Rahmen und Gehäuseteilen gemacht. Jetzt fehlte noch die Justage der Bild Geometrien. Dafür habe ich in meinem Fundus noch einen alten PAL-Bildmustergenerator, der auch einen RF-Modulator eingebaut hat, mit dem vom VHF Band 1, Band 3 bis UHF durchgestimmt werden kann. Also ist das das ideale Gerät um einen alten Fernseher ohne externen Videoeingang zu prüfen. Hierbei werden auch gleich die Tuner des TV-Gerätes auf Funktion geprüft.

Bildmustergenerator

 

Eingestellte Bildgeometrie am Universum SK992

Nach einer finalen Reinigung der Bedienknöpfe kann das Gerät dann als „funktionstüchtig“ in der Vitrine die vielleicht nächsten 50 Jahre verbringen 😀

 

 

Diodenkennlinie mit Sourcemeter und Matlab aufnehmen

Dieses Mal gibt es hier keinen Bericht über die Restauration oder die Vorstellung eines alten Gerätes. Im Rahmen meiner beruflichen Tätigkeit muss ich immer wieder Messaufbauten realisieren und diese nach Möglichkeit automatisieren, um die Messzeiten zu minimieren. Auch die Datenauswertung und das Postprocessing möchte ich immer gerne automatisieren. Dafür gibt es sehr viele unterschiedliche Lösungsansätze. Der Grundansatz ist aber immer gleich. Ein, oder mehrere Messgeräte sind über eine Schnittstelle mit einem Rechner oder Controller verbunden. Auf dem Rechner oder Controller läuft eine Software, die das Messgerät steuert und die gemessenen Daten an den Rechner zurücksendet. Auf dem Rechner werden die Daten dann gespeichert, den Anforderungen entsprechend aufbereitet und ausgegeben.

Die Schnittstellen zwischen Rechner und Messtechnik können je nach Ausstattung des Messgerätes dabei RS232, GPIP, IEEE1394, USB oder LAN sein. Bei vielen Geräten wird der einfache SCPI-Befehlssatz im ASCII Code zum Befehle senden und empfangen über das entsprechende Protokoll der gewählten Schnittstelle verwendet. Die Software am Rechner oder Controller muss in der Lage sein die Hardware anzusprechen und schon kann eine Datenkommunikation hergestellt werden. Als Software oder Skriptsprache kann hier beispielsweise NI-LabVIEW, Matlab, C-Code, C++ Code, C#, Python, etc. verwendet werden. Und die Rechner- oder Controllerhardware kann ein Windows, Mac, oder LinuxPC sein, aber auch ein einfacher Arduino, RaspberryPi, oder ein programmierter Mikro-Controller, der eine der benötigten Schnittstelleninterfaces besitzt.

Bei meiner Arbeit wird das gerne mit Matworks Matlab gemacht (bzw. ich mache es gerne mit Matlab, weil ich Programme und Skripten lieber tippe als sie zu zeichnen 😀 ), einer skriptorientierten Software. Im konkreten Beispiel habe ich ein SOURCEMETER des Herstellers Keithley, das Keithley2400 über die RS232 Schnittstelle an einem WIN10 PC mit Matlab 2017b angesteuert. Das Sourcemeter hat die Aufgabe eine Diodenkennlinie aufzunehmen. Das Sourcemeter ist imstande einen Strom zu sourcen, also eine steuerbare Stromquelle zu sein und gleichzeitig den gesourcten Strom und die an den Klemmen anliegende Spannung zu messen. Umgekehrt wiederum kann es auch als steuerbare Spannungsquelle eingesetzt werden, die Spannung an den Klemmen und den Strom durch den DUT (Device Under Test) messen.  Und das geht in allen vier Quadranten, also Stromquelle oder -Senke, oder Spannungsquelle oder -Senke sein.

Genau das benötigte ich in diesem supereinfachen Beispiel um die Kennlinie eines PN-Überganges aufzunehmen und zwar vom Diffusionsbereich bis in den Durchlassbereich und natürlich auch wenn der PN-Übergang unter Photonenbeschuss steht 🙂

Die folgenden beiden Matlab-Skripten ermöglichen diese einfache Kennlinienaufnahme. Der Messaufbau selbst besteht lediglich aus einer, an die Klemmen des K2400 angeschlossenen Diode (in diesem Fall eine Photozelle). Dabei stellt das erste Skript eine gesteuerte Stromquelle dar und im zweiten Skript wird die Spannungsquelle durchgesteuert und jeweils die Daten aufgezeichnet und zum Schluss als Plot dargestellt.

 Matlab Code stromgetrieben:

% IV Logger PN Kennlinie
% 2.05.2019 ingmarsretro
% der supereasysimple-code
% drive current and measure voltage
% with sourcemter über RS232 

 serialObject = serial('COM4','BaudRate',19200, 'DataBits',8);   

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Sourcemeter 2400 setup                             %
    % serial config: 8N1, 19200, termchar CR+LF          %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    fopen(serialObject)
    s.InputBufferSize = 6000;
    fprintf(serialObject,'*RST');
    
    mincurr = -15E-3;  % maximaler negativer strom (load an der Zelle) 
    maxcurr = 10E-4;   % maximaler positiver strom 
    step = 1E-5;       % schrittweite
    

    %%%%%%%%%%%%%%%%%%%%%%%%%%
    % Messgeraet einstellen  %
    %%%%%%%%%%%%%%%%%%%%%%%%%%
    % SOURCING ->  CURRENT
    %
    %fprintf(serialObject,':INIT:CONT OFF;:ABOR');
    fprintf(serialObject,':FORM:DATA ASCII');
    fprintf(serialObject,':SOUR:FUNC CURR');
    fprintf(serialObject,':SOUR:CURR:MODE FIX');
    fprintf(serialObject,':SOUR:CURR:RANG 10E-2'); % -> 000.000mA
    fprintf(serialObject,':SOUR:CURR:LEV 0.0'); % -> Starteinstellung 0 A
    
    % MEASUREMENT -> Spannung 
    fprintf(serialObject,':SENS:FUNC "VOLT:DC"');
    fprintf(serialObject,':SENS:VOLT:PROT 8');     % -> compliance 8V
    fprintf(serialObject,':SENS:VOLT:RANG 10E-1'); % -> 0.00000 V
    fprintf(serialObject,':TRIG:COUN 1');
    
    %fprintf(serialObject,':CONF:VOLT:DC');
    
    fprintf(serialObject,':OUTP ON');

        %% Messen und Daten abholen
    count = 1; 
    v(1)=0; i(1)=0;  %init der arrays 
   
       for curr = mincurr:step:maxcurr
           
          strom=num2str(curr);
          command = strcat(':SOUR:CURR:LEV ',{' '},strom);
          fprintf(serialObject,char(command));
         

          fprintf(serialObject,':READ?');
          data=fscanf(serialObject);  % gesamten buffer des device einlesen
          c = strsplit(data,',');          % gelesenen string nach ',' in zellen zerlegen
          i(count) = str2num(cell2mat(c(2)));                 % stromzelle 
          v(count) = str2num(cell2mat(c(1)));                 % spannungszelle
        

        count = count +1;
       end
   
    
    figure(1);
    plot(v,i);
    grid on; hold on;
    xlabel('voltage [V]'); ylabel('current [A]')
    title('IV - Kennlinie ');
    
    %% instrument in local mode schalten
    fprintf(serialObject,':OUTP OFF');
    fprintf(serialObject,'SYSTEM:LOCAL');
    fclose(serialObject);

 

Matlab Code spannungsgetrieben:

% IV Logger PN Kennlinie
% 3.05.2019 ingmarsretro
% der supereasysimple-code
% drive current and measure voltage
% wit sourcemter über RS232 

 serialObject = serial('COM4','BaudRate',19200, 'DataBits',8);   

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Sourcemeter 2400 setup                             %
    % serial config: 8N1, 19200, termchar CR+LF          %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    fopen(serialObject)
    s.InputBufferSize = 6000;
    fprintf(serialObject,'*RST');
    
    minvolt = -1;      % maximale negative spannung  
    maxvolt = 0.5;       % maximale positive spannung
    
    %mincurr = -20E-3;  % maximaler negativer strom (load an der Zelle) 
    %maxcurr = 10E-4;   % maximaler positiver strom 
    
    step = 1E-2;       % schrittweite
    
    % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%
    % Messgeraet einstellen  %
    %%%%%%%%%%%%%%%%%%%%%%%%%%
    % SOURCING ->  VOLTAGE
    %
    %fprintf(serialObject,':INIT:CONT OFF;:ABOR');
    fprintf(serialObject,':FORM:DATA ASCII');
    fprintf(serialObject,':SOUR:FUNC VOLT');
    fprintf(serialObject,':SOUR:VOLT:MODE FIX');
    fprintf(serialObject,':SOUR:VOLT:RANG 10E-0');    % -> 00.0000 V
    fprintf(serialObject,':SOUR:VOLT:LEV 0.0');       % -> Starteinstellung 0 V
    
    % MEASUREMENT -> CURRENT 
    fprintf(serialObject,':SENS:FUNC "CURR:DC"');
    fprintf(serialObject,':SENS:CURR:PROT 40E-3');     % -> compliance 10.0000 mA
    fprintf(serialObject,':SENS:CURR:RANG 10E-2');     % -> 0.00000 mA  (muss kleiner als complience sein)
    fprintf(serialObject,':TRIG:COUN 1');
    
    %fprintf(serialObject,':CONF:VOLT:DC');
    
    fprintf(serialObject,':OUTP ON');


        %% Messen und Daten abholen
    count = 1; 
    v(1)=0; i(1)=0;  %init der arrays 
   
       for volt = minvolt:step:maxvolt
           
          spannung=num2str(volt);
          command = strcat(':SOUR:VOLT:LEV ',{' '},spannung);
          fprintf(serialObject,char(command));
           


          fprintf(serialObject,':READ?');
          data=fscanf(serialObject);  % gesamten buffer des device einlesen
          c = strsplit(data,',');          % gelesenen string nach ',' in zellen zerlegen
          i(count) = str2num(cell2mat(c(2)));                 % stromzelle 
          v(count) = str2num(cell2mat(c(1)));                 % spannungszelle
        
        

        count = count +1;
       end
   
    
    figure(1);
    plot(v,i);
    grid on; hold on;
    xlabel('voltage [V]'); ylabel('current [A]')
    title('IV - Kennlinie ');
    
    %% instrument in local mode schalten
    fprintf(serialObject,':OUTP OFF');
    fprintf(serialObject,'SYSTEM:LOCAL');
    fclose(serialObject);

 

Das Ergebnis der beiden Skripten ist der folgende Kennlinienverlauf:

8-Bit Generation: Der ZX81 oder Timex Sinclair 1000

Sinclair Timex 1000

Ein neues Exemplar aus der 8 – Bit Computer Ära hat Einzug in meine kleine Sammlung gehalten. Ein Timex Sinclair 1000 – ein 8Bit Heimcomputer der 80er Jahre auf Basis des Sinclair ZX81. An dieser Stelle möchte ich mich bei Herrn Roland Pufitsch recht herzlich bedanken. Er hat mir den Timex 1000 als Spende zur Verfügung gestellt – Vielen Dank.

Der Timex Sinclair 1000 oder auch TS1000 ist das Ergebnis eines Joint Ventures des Herstellers Sinclair Research Ltd. und der Amerikanischen Timex Corporation. Das Gerät basiert auf dem Sinclair ZX81 und ist auch vollkommen kompatibel zum Z81 und gilt als die nordamerikanische Version des ZX81. Auch die technischen Daten unterscheiden sich kaum. Lediglich der Speicher wurde mit 2kB doppelt so groß ausgeführt wie beim ZX81.

Veröffentlicht und verkauft wurde der TS1000 im Juli 1982 zu einem Preis von unter 100$. Er galt damals als der günstigste Heimcomputer. 1983 wurde die Produktion dieses Modells dann wiedereingestellt. Die technischen Daten gleichen denen des ZX81.

Mainboard des TS1000

CPU:                         Zilog Z80 mit 3.25 MHz Taktfrequenz
Speicher:                2kB, erweiterbar auf max. 64kB
Anschlüsse:           Audio In, Audio Out für den Datenrecorder
Memoryslot für die Speichererweiterung
RF-Modulator Ausgang (Kanal VHF 2  oder 3)
Auflösung:              22 x 32 Zeichen
Ton:                             nicht vorhanden
Betriebssystem:  BASIC Interpreter im ROM

Auf dem Mainboard sind gerade einmal vier ICs verbaut, ein HF-Modulator und die Peripherie für die Spannungsstabilisierung und -versorgung, sowie die IO – Anschlüsse für den Datenrecorder und die Federleisten für die Folientastatur. Die verbauten IC´s sind folgende:

CPU:  der Zylog Z80 Prozessor (in vielen Modellen ein NEC Z80 mit der Bezeichnung D780C-1 im 40Pin Plastik DIP – Gehäuse

ULA: ein Custom IC mit der Bezeichnung ULA 2C21 0E. Dieser Chip ist die ULA des ZX81 und Timex1000 (Uncommited Logic Array). Dieser IC generiert den 6,5 MHz Takt von dem eine 3.25 MHz Clock für den Prozessor geteilt wird. Er managet die Audi IN und Audio OUT Datensignale zum Datenrecorder. Er generiert den Synchrontakt für die Videoausgabe. Er handelt die Tastaturmatrix und steuert den ROM und RAM Zugriff. Dieser Customchip ist heute in einer FPGA, oder CPLD Nachbildung erhältlich, bzw. wird der VHDL Code dafür in entsprechenden Foren veröffentlicht und kann selber synthetisiert werden.

ROM: der Chip mit der Bezeichnung ZCM38818 ist der ROM Baustein der den Basic Interpreter beherbergt. Alternativ kann hier auch ein 2364 8kbit Prom verwendet werden.

RAM:  als Ram ist hier entweder ein 2kB DRam Chip oder ein 1kB DRam verbaut (Mostek MK4801/MK4118)

Bei dem hier vorliegenden Modell stand nun eine erste Inspektion an. Dabei ist mir gleich eine DB9 Male – Buchse aufgefallen, die nachträglich eingebaut wurde. Nach dem Öffnen des Gehäuses ist mir schnell aufgefallen, dass das Flex Kabel der 5poligen Tastaturfolie vollständig abgebrochen ist. Und genau diese fünf Pins der Federleiste, in die das Flex Kabel gesteckt ist, sind mit der DB9 Buchse verbunden. Es hat hier anscheinend eine externe Reparaturlösung für das defekte Keyboard gegeben. Die DB9 Buchse könnte aber auch eine Nachrüst-Joystick Lösung gewesen sein, denn auch eine +5V Leitung war zur Buchse geführt. In diesem Fall egal. Ich wollte das Gerät in einen annähernd originalen Zustand versetzen. Dazu musste erst einmal die 9polige Sub-D Buchse heraus.

Nachträglich eingebaute SUB-D Buchse
Abgebrochenes Flexkabel zur Folientastatur

Die Buchse war schnell ausgebaut und die Drähte entfernt. Jetzt ging es daran, das Flex Kabel zu retten. Die einfachste Möglichkeit wäre natürlich, eine neue Folientastatur zu erwerben, und diese dann einzubauen. Aber hier ist das Kabel knapp ober dem Stecker gebrochen und ich dachte mir, es wäre einen Versuch wert, einfach mit der verbleibenden Länge des Flex Kabels auszukommen. Dazu habe ich das Kabel am gebrochenen Ende einfach wieder gerade geschnitten, mit ein wenig Captan-Tape verstärkt und wieder in die Federklemmleiste eingesteckt. Die auf den Kunststoffträger aufgebrachten Leiterbahnen sind sehr dünn und empfindlich. Man sollte hier auch nicht versuchen zu Löten und die Leitungen mit einer Lötverbindung zusammenzufügen.

Das abgebrochene Stück Flexleitung neben der Zuleitung zur Folientastatur
der zugeschnittene verbleibende Rest

Nachdem die Tastatur nun wieder funktionieren sollte, wurden auf dem Mainboard die obligatorischen Arbeiten, wie Elkotausch und Prüfen der Spannungsversorgung durchgeführt. Eine kleine Änderung, die sich funktionell vom Originalzustand unterscheidet, ist der Umbau des Antennenausgangs auf einen Videoausgang. Hierzu wird der HF-Modulator lahmgelegt. Das bedeutet, die +5V Versorgung zum Modulator wird getrennt, die Leitung zum Signalpin der HF-OUT Buchse getrennt und ebenso die vom Mainboard kommende VBS-Leitung (also das Videosignal). Die nun offene Videoleitung wird über einen 100µF Elko zur ehemaligen HF-Out Buchse geführt und ist somit DC-mäßig entkoppelt.

RF-Modulator ohne Deckel
Trennen der Leitungen
Einbau des Koppelkondensators

Danach folgte eine erste Inbetriebnahme. Das Videosignal wurde an einen Multinormen-Monitor angeschlossen und das vorher überprüfte 9V Netzteil an die Buchse für die Spannungsversorgung.

erster Funktionstest

Das Ergebnis war äußerst positiv. Das Einschaltbild erschien sauber auf dem Bildschirm. Die Tastatur funktionierte ebenfalls einwandfrei. Jetzt bleibt nur noch, die Bohrlöcher und Öffnungen der SUB-D Buchse sauber zu verschließen und dann kann das Gerät wieder zusammengebaut und in die Vitrine gestellt werden…

 

 

Keysite Oszilloskop stirbt im Standby – Netzteilreparatur

Ein interessantes Problem ist bei der Messtechnik in den Labors meines Arbeitsplatzes aufgetreten. Mit „Messtechnik“ bezeichne ich die Ausstattung eines Laborarbeitsplatzes, für die Grundlagenausbildung. Von den Laborarbeitsplätzen gibt es insgesamt neunzehn Einheiten, die mit je zwei Labornetzgeräten, zwei Tischmultimetern, einem Keysite Signalgenerator und einem Keysite (Agilent) Oszilloskop der Serie Infiniivision DSO-X 20xx ausgerüstet sind. Alle Geräte sind netzwerkfähig und sind über LAN mit dem zugehörigen Arbeitsplatzrechner verbunden. So kann mit Hilfe unterschiedlicher Software (Agilent VEE, Matlab, LabVIEW etc.) auf die Messgeräte zugegriffen werden. Die Geräte wurden vor ca. drei Jahren angeschafft und ersetzt die fast zwanzig Jahre alte Laborausstattung. 

Doch nun ist der Fall aufgetreten, dass bei einem Arbeitsplatz das DSO-X2012A Oszilloskop kein Lebenszeichen mehr von sich gab. Es kommt gelegentlich vor, dass bei Laborübungen oder beim freien Arbeiten in den Labors einmal ein Studierender den Not-Aus Schalter des Arbeitsplatzes betätigt und ihn so stromlos macht.  Doch das war nicht der Fall. Alle an dem Arbeitsplatz angeschlossenen Geräte funktionierten, mit Ausnahme des DSO. Auch am Ende des Kaltgerätesteckers war Spannung zu messen. Also konnte das Problem nur am Oszilloskop selber liegen. Die Rückwand ist schnell abgeschraubt, ein Schirmblech entfernt und das Netzteil liegt frei. Gleich bei der ersten optischen Begutachtung ist der große Siebelko mit nach oben gewölbter Kappe aufgefallen. Aber einmal schön der Reihe nach.

Netzteil des Infiniivision

An den AC Pins vom Netzeingang war die Netzspannung zu messen, jedoch an keinem der Ausgänge des Netzteils eine Gleichspannung. Egal ob der Powerschalter des Gerätes ein- oder ausgeschaltet war. Die Vermutung liegt nahe, dass das Netzteil defekt ist.

Eingangssicherung

Zunächst wurde das Netzteil ausgebaut und beginnend von der AC-Eingangsseite untersucht. Die Printsicherung im Bereich des Netzfilters ist gleich als erstes defektes Bauteil aufgefallen. Es handelt sich um eine träge 6.3A/250V Sicherung. Da eine ausgelöste Sicherung immer einen Grund hat, abzuschalten, wurde weitergesucht. Die Netzgleichrichter waren ok, jedoch hatte der 100uF / 420V Elektrolytkondensator, der als Gleichspannungsglättung der Primärseite eingesetzt ist, thermisch schon einiges abbekommen und war aufgebläht.

originaler Elko 100uF /420V /105°C

Auch seine Kapazität war nicht mehr im Nominalbereich. Aber auch das war nicht direkt der Grund für das Auslösen der Sicherung. Der war dann schnell gefunden. Ein Mosfet der als Ansteuerung des Transformators dient, war niederohmig. Genauer gesagt er hatte einen Kurzschluss zwischen allen Anschlüssen.

Mosfet STP12NM50

Das folgende Bild zeigt die Einbaupositionen der Bauteile. Diese wurden erneuert. Der Mosfet wurde durch einen Originaltyp ersetzt und der Netzelko gegen einen 100uF / 450V /105°C Typ getauscht. Der ist zwar von der Bauhöhe etwa fünf Millimeter höher, passt aber problemlos in das Netzteil.

Einbaulage des Kondensators und des Mosfet

Auf der Rückseite der Netzteilplatine waren zwei SMD Widerstände im Bereich des Gate-Anschlusses des Mosfet defekt. Es handelt sich dabei um einen SMD Widerstand der Baugröße 0805 mit 5,11 Ohm und einen SMD Widerstand der Baugröße 1206 mit 2,0 kOhm. Das untenstehende Bild zeigt auch hier wieder die Einbaulage.

Einbaulage der defekten SMD Widerstände

Nachdem alle erwähnten Bauteile erneuert waren, wurde ein erster Funktionstest durchgeführt. Dieser war jedoch ernüchternd, denn das Netzteil arbeitete noch nicht. Die Sicherung blieb intakt und die primärseitige Gleichspannung stand stabil. Doch das Gate des Mosfet wurde nicht angesteuert – leider. Denn jetzt kam der aufwendige Teil der Reparatur. Auf der Netzteilplatine befindet sich, stehend eingebaut, eine weitere Platine, auf der mehrere Controller IC´s verbaut sind. Verfolgt man die Gate-Leitung vom Mosfet, so endet sie an einem Pin dieser Ansteuerungsplatine. Also muss diese raus.

Controllerboard ausgebaut

Dazu musste zuerst das Kühlblech entfernt werden. Dann wurde es etwas mühsam, denn das Controllerboard ist nicht über eine Stiftleiste oder Steckverbindung mit der Hauptplatine verbunden, sondern die Kontaktpins sind gelayoutet und ausgefräst. Das bedeutet, man muss die Auslötarbeiten sehr behutsam in Angriff nehmen, um die Leiterbahnen an den Enden der gefrästen Pins nicht zu beschädigen.

Mainboard ohne Controllerplatine

 

UC3842B

Als der Ausbau erfolgreich abgeschlossen war, konnte das Controllerboard begutachtet werden. Und siehe da, die vom Gate des Mosfet geroutete Leitung endet an Pin 6 eines kleinen IC´s. Dabei handelt es sich um einen UC3842B VD1R2G. Bei diesem IC war das Gehäuse gesprengt. Neben dem Controller IC, war auch ein SOT23 PNP-Transistor (PMBT 2907A) gestorben und an allen Pins niederohmig.

Einbaulage der defekten Komponenten

Nach dem Erneuern der defekten Komponenten, wurde das Netzteil wieder zusammengebaut und ein Funktionstest durchgeführt. Das Oszilloskop startete wieder und das Netzteil verrichtete seinen Dienst.

defekte Bauteile
Ergebnis nach erfolgter Reparatur

Interessant wäre es jetzt herauszufinden, warum das Netzteil nach gerade einmal drei Jahren seinen Geist aufgibt. Zumal die Oszilloskope nicht im Dauerbetrieb laufen, sondern nur während der entsprechenden Lehrveranstaltungen eingeschaltet sind. Dabei ist folgendes aufgefallen: Das Oszilloskop ist permanent an die Stromversorgung angeschlossen. Der Power-Schalter des Oszilloskops schaltet aber nicht die AC-Versorgung aus, sondern nur im Sekundärbereich des Netzteils die Controlleransteuerung. Das bedeutet, das Netzteil arbeitet im ausgeschalteten Zustand quasi im Standby-Betrieb. Und dabei ist uns aufgefallen, dass bei allen ausgeschalteten Oszilloskopen im Standby eine Verlustleistung auftritt, die die Mosfets und vor allem den 100uF Elko stark erwärmt. Das würde den aufgebähten, ausgetrockneten Elko und den darauffolgenden Tod der Netzteile erklären.  Um das zu verifizieren wurde bei mehreren Geräten die seit Tagen nicht eingeschaltet waren, die Temperatur an den Komponenten gemessen.

 
Thermofühler an der Elkooberfläche

Hier konnte folgendes festgestellt werden. Sowohl an der Oberfläche des Kondensators als auch am Kühlblech der Mosfets waren im ausgeschalteten Zustand Temperaturen von 56°C bis knapp 60°C zu messen.  Sollte das so sein ??

Temperaturmessung am Elektrolytkondensator

 

Hier noch die benötigten Bauteile:

  • Widerstand 5R11 0,1W 0,1% Farnell Nr.: 1872688
  • Widerstand 2k0 0.66W Farnell Nr.: 721-9844
  • PNP Transistor SOT23, SMD Stempel 2F Type PMBT2907A, 215 Farnell Nr.: 1626500
  • PWM Controller IC, UC3842B VD1R2G / 500kHz Farnell Nr.:2845218
  • Kondensator 100uF / 105°C / 450V
  • Printsicherung T6.3A 250V

Jun2019: Bestellnummern aktualisiert