Archiv der Kategorie: Uhren

Mechanische Uhren, vorwiegend Drehpendeluhren deren Instandsetzung ich dokumentiere.

Eigenbau Nixiuhr

Loading

Das in den letzten Jahren das Thema Retro immer mehr zum Trend wurde, ist auch mir nicht entgangen. Auch der „Industrial“- und „Steam“-Style hat in vielen Haushalten Einzug gehalten.  Man(n) stellt sich wieder viele Dinge ins Regal, die die robuste Technik und das Aussehen der vergangen Jahrzehnte repräsentieren. So flackern LED-Leuchtmittel in den Räumen, die optisch den Glühbirnen der Gründerzeit nachempfunden wurden. Die Messing Lampenfassungen werden von einem mit Stoffgeflecht ummanteltem Kabel gehalten. Anstelle der Kohle- oder Wolframglühfäden in den Birnen arbeitet modernes LED-Filament. Thematisch diesem Stil entsprechend, sind beispielsweise auch mechanische Uhren und elektrische Uhren mit Leuchtanzeigen aller Art wieder gefragt. Passend zu diesem Trend, habe ich in älteren Blogbeiträgen schon über die VFD-Uhren berichtet. (VFD = VaccumFLuoreszenzDisplay) Diese Anzeigetechnologie verwendete man zum Beispiel bis Ende der 90iger Jahre noch häufig in Videorecordern, HiFi Geräten und diversen Radioweckern. Danach war die LED und LCD Technologie Standard. Heute halten überall die kleinen OLEDs Einzug. Im Rahmen des Retro Revivals werden VFD´s in Form von Einzelziffer-Anzeigeröhren zu Uhren zusammengebaut. Diese Uhren gibt es als Fertiggeräte oder auch als Bausätze (grother.de).  Da diese Anzeigeröhren mittlerweile nicht mehr hergestellt werden und nur Altbestände (new old stock) verfügbar sind, steigen auch die Preise. Aber es geht preislich noch schlimmer – eine technische Entwicklung aus den 1920er Jahren ist eine Anzeigetechnologie nach dem Prinzip der Glimmlampe.  Hierbei wird in einem, mit Edelgas gefüllten, Glaskolben eine aus Draht gebogene Ziffer als Kathode, vor einem dünnen Metallgitter als Anode angebracht. Legt man eine Spannung an, so beginnt das Edelgas entlang des als Ziffer geformten Drahtes zu glimmen. So entsteht, von außen betrachtet, der Eindruck einer leuchtenden Ziffer. In einer solchen Röhre sind meistens die Ziffern von 0-9 untergebracht und für jede Ziffer ist natürlich auch ein separater Anschluss vorhanden. Viele von den Lesern werden diese Art von Röhre sicherlich kennen. Sie nennt sich NIXIE – Anzeigeröhre (stammt von der der Bezeichnung „Numeric Indicator eXperimental No. 1“

Eine Uhr mit solchen Anzeigeröhren fehlt noch in meiner Sammlung. Also möchte ich eine solche haben. Aber kaufen ist einfach – und außerdem auch sehr teuer. So habe ich mir vorgenommen, eine Nixieuhr selber zu bauen. Begonnen hat alles mit einer langwierigen Suche nach den Röhren, denn auch für diese muss man mittlerweile schon einiges hinlegen. Und ich benötige mindestens sechs Stück, da meine Uhr auch eine Sekundenanzeige haben soll. So habe ich also im Internet auf verschiedensten Plattformen gesucht – und in der Bucht wurde ich fündig. Dort wurde ein Board bestückt mit Nixieröhren angeboten, das aus irgendeinem alten Gerät herausgebrochen wurde. Die Funktion des Boards wurde als „unbekannt“ angegeben – dafür war es sehr günstig. Der Verkäufer hatte zwei davon. Also riskierte ich es und kaufte die beiden Platinen bestückt mit je fünf Nixies.

Die Röhren waren dann auch mit einiger Vorsicht erfolgreich ausgelötet. Die Type der Röhre ist die Z574M, zu der man im Netz auch die Datenblätter findet und somit auch die Sockelbeschaltung hat.

Mit Hilfe der Beschaltung lässt sie sich dann auch einfach kontaktieren und so Ziffer für Ziffer jeder Röhre überprüfen. Die Kenndaten der 574 sind:

  • Anodenzündspannug: 150V
  • Anodenbrennspannung: 140V
  • Anodenlöschspannung: 120V
  • Max Anodenspannung: 170V
  • Kathodenstrom min: 1.5mA
  • Kathodenstrom max: 2.5mA

Mit einem geeigneten Netzgerät konnte ich die notwendigen Versorgungsspannungen für den Funktionstest schnell einstellen.

Man sieht hier, dass die Röhre bei einer Brennspannung von knapp 140V einen Strom von 2.8mA zieht. Das entspricht einer Leistung von 392mW. Wenn ich also hochrechne und alle sechs Ziffern der Uhr dauerbestromt werden, dann muss die Spannungsversorgung für die Röhren ca. 2.3W bringen.

Die Röhren funktionieren also schon mal. Jetzt kann ich mir Gedanken machen wie die Uhr aussehen soll und noch mehr, wie ich sie konstruieren will.

Die Idee ist, dass ein Mikrocontroller alle sechs Röhren ansteuern soll.  Das will ich mit 8-Bit 4094er Schieberegistern realisieren, wovon je vier Bit für eine Röhre verwendet werden. Diese vier Bit aus dem Shift-Register sollen dann über Binary Coded Decimals (also BCD) die Röhren ansteuern. Da die Röhren aber für jede Ziffer einen Anschluss haben, müssen aus den vier BCD-Leitungen zehn separate Zifferansteuerungen generiert werden. Das wird ein CD4028 erledigen. Der IC CD4028 ist ein „BCD to Dezimal Decoder“. Um die relativ hohen Spannungen der Nixies zu schalten, wird der BCD-Dezimal Decoder einen geeigneten Transistor ansteuern. Hier wird der MPSA42 seinen Dienst verrichten. Das ist ein NPN Bipolar Transistor mit einer Kollektor-Emitter Spannungsfestigkeit von 300VDC bei einem maximalen Kollektorstrom von 500mA.  Um die Röhren möglichst flexibel einsetzen zu können, habe ich mir ausgedacht, für jede Röhre eine eigene Platine zu gestalten. Diese einzelnen Anzeigeplatinen sollen dann auf eine Hauptpatine gesteckt werden. So kann man, sollte ein Digit einmal defekt sein, das betreffende Board einfach herausziehen und es reparieren. Dann muss nicht am Mainboard herum gelötet werden.

Am Mainboard soll der Microcontroller Platz finden. Auch die Nieder- und Hochspannungsversorgung und die Schieberegister sollen am Mainboard untergebracht werden. Die Display-Platinen tragen lediglich die Nixieröhre samt deren Treibertransistoren und den BCD-Dezimal Decoder. Mittels Pfostensteckverbindern sollen sie einfach in das Mainboard einsteckbar sein. Um diese Formulierungen ein wenig einfacher darzustellen habe ich diese Skizze angefertigt:

Auf Basis dieser Idee begann ich nun, die Schaltpläne zu zeichnen. Mit dem Displayboard, auf dem sich die Röhre befindet fing es also an. Der Schaltungsaufbau ist sehr einfach. Über zwei gegenüber liegende Pfostensteckverbinder sollte das Board auf dem Mainboard einen stabilen Halt bekommen. Einer der Steckverbinder versorgt den BCD-Dezimaldekoder (CD4028N) mit den vier Dateneingängen und der 5V Versorgungsspannung für die Logik. Auf der anderen Seite des Boards wird die „Hochspannung“ für die Röhre bereitgestellt.

Daraus konnte ich dann einfach ein Layout erstellen und dieses dann als Prototyp als Platine herstellen.

Nach dem Ätzen und Bestücken der ersten Platine und fünf Weiteren war der erste Schritt der Nixieuhr getan:

Um den ersten Teil des Machwerks zu testen, hatte ich an meiner Arbeitsstelle ein DEB100 Digital-Experimentierboard zur Verfügung. Das folgende Kurzvideo zeigt das Testergebnis:

Nachdem dann alle sechs Boards bestückt und getestet waren, hatte ich mich mit der Planung des Mainboards beschäftigt. Zu Beginn stand natürlich wieder die Erstellung eines Schaltplanes. Aus einer externen einer 12VDC Quelle, die idealer Weise ein simples Steckernetzteil sein sollte, mussten die Versorgungsspannungen generiert werden. Zum einen benötigte ich eine 5VDC Versorgung für den Microcontroller, die Schieberegister und die BCD Decoder und zum anderen eine „Hochspannung“ von 140VDC für die Nixieröhren. Die 5V waren schnell erledigt – hier sollte ein 7805 Längsregler seinen Dienst verrichten. Da die Stromaufnahme der digitalen Komponenten relativ gering ist, bedurfte es hier keiner aufwendigen Maßnahmen. Die 7V Differenz am 7805 bei den paar Milliampere packte er ohne großartige Verlustleistungswärmeabgabe. Für die Erzeugung der 140V bastelte ich einen Step-Up – Konverter mit einem MC34062 (Inverting Regulator – Buck, Boost, Switching) Controller, der über einen FET eine 220uH Induktivität schaltet. Über einen Spannungsteiler mit Trimm Poti am Ausgang lässt sich eine Spannungsrückmeldung an den Komparator Ausgang des Controllers senden und somit die Ausgangsspannung einstellen. Als Microcontroller nehme ich für die meisten meiner Projekte (aufgrund des Lagerstandes 🙂 ) immer Atmega328 und Ähnliche. So auch hier. Das Ergebnis ist folgender Schaltplan:

Daraus habe ich wieder ein Layout gebastelt und wieder ein Board geätzt und bestückt. Allerdings wurde dieses Prototypen Testboard nur eine Version mit vier Digits. Der Grund war auch, dass ich keine größere Roh-Platine zur Verfügung hatte 🙂

Daraus habe ich wieder ein Layout gebastelt und wieder ein Board geätzt und bestückt. Allerdings wurde dieses Prototypen Testboard nur eine Version mit vier Digits. Der Grund war auch, dass ich keine größere Roh-Platine zur Verfügung hatte 🙂

Nach diversen erfolgreichen Tests mit dem Prototypen Board, bestellte ich mir beim Platinen Herstellers meines Vertrauens professionell gefertigte Boards. Nach dem Bestücken derselben erstellte ich mir dann ein Testprogramm das alle Digits ansteuern konnte. Ein kurzes Testvideo ist unten verlinkt:

Wie die Uhr dann mit den „schön“ gefertigten Boards aussieht, zeigen die folgenden Fotos. Um das ganze Werk noch etwas nostalgischer zu gestalten, hatte ich die Idee die Boards auf einer gefrästen Holzplatte zu montieren. (Danke an Gebhard für die Holzarbeiten). Um die Uhrenelektronik auch dauerhaft staubfrei zu halten, ließ ich mir eine transparente Plexiglashaube anfertigen.

Skizze für die Arcylglashaube

Die Software habe ich wie so oft mit der Arduino IDE gebastelt. Zum Flashen des Microcontrollers verwende ich den AVRISP mkII Programmer.  Wenn jemand am Code interessiert sein sollte kann ich ihn hier im Blog auch posten.

 

Temperatursensor für IV-11 DCF melody

Loading

Ein Funktionsupdate für die IV-11 DCF melody Uhr ist von gr-projects erhältlich. Es handelt sich dabei um einen Funktemperatursender. Das Besondere daran ist, dass der im ISM-Band 433MHz arbeitende Sender mit einer Photovoltaikzelle (Solarzelle) ausgestattet ist. Je nach Ausführung kann im Sender ein kleiner Akku oder eine CR2032 Knopfzelle verbaut werden. Die Batterie wird so bei Sonneneinstrahlung von der Solarzelle gestützt bzw. in der Akkuversion wird dieser tagsüber geladen und hält den Sender dann über die dunkle Zeit weiter in Betrieb.

Der Zusammenbau ist einfach. Der Bausatz besteht aus einem Sender und einem Empfänger. Die Platinen von Sender und Empfänger sind mit wenigen Bauteilen schnell bestückt. Hier ist aber doch etwas Aufmerksamkeit gefragt und man sollte die Dokumentation sorgfältig lesen, denn aufgrund der geringeren Stückzahl der Bausätze werden die Platinen ohne Bauteilaufdruck und Lötstoplack gefertigt.

Sendermodul

Die Funkmodule selbst sind vollständig vorbestückt (SMD) und müssen nur mehr in die entsprechenden Platinen eingelötet werden. Dem Temperaturfühler (NTC) kann zu Abgleichzwecken optional ein Trimmpotentiometer parallelgeschaltet werden. Der Sender wird, wie auch der Empfänger, in ein kleines PVC-Gehäuse eingebaut. Hier sind außer einem 3mm Bohrloch und ggf. etwas Silikon für die Abdichtung der Solarzelle (für den Betrieb außen am Fenstersims) keine weiteren Werkzeuge von Nöten.

Sender mit Solarzelle

Um den Empfänger mit der Uhr zu verbinden, sind am Mainboard der Uhr ein paar kleine Änderungen durchzuführen. Zum einen wird der Microcontroller getauscht – logisch – denn es gibt ja ein neues Programm, das in der Datumszeile dann auch die Temperatur anzeigt. Ein Widerstand wird entfernt, einer kommt hinzu und ein Jumper kann gegen eine Brücke getauscht werden. Die Verbindung zwischen dem Mainboard der Uhr und dem Funkempfänger wird mit einem Stück Kabel hergestellt. Drei Leitungen sind erforderlich (GND, +5V und das Datensignal vom Empfängercontroller zum Uhrencontroller). Das war´s dann auch schon. Die Uhr kann in Betrieb gehen. Nach einigen Sekunden wird die empfangene Temperatur in der Röhre angezeigt.

Empfängerplatine im Gehäuse

 

Ein Video über den Aufbau der Schaltung gibt es hier:

VFD-Uhr mit Datum, Wochentag und Sound

Loading

Einen neuen Bausatz zum Thema Vakuum Fluoreszenz Display habe ich von Günter (gr-projects) erhalten. Vielen Dank!

Es ist eine Uhr mit Vakuum-Fluoreszenz-Anzeigeröhren der Typen IV-11 für die Stunden, Minuten und Sekundenanzeige und einer IV-18 Röhre für die Datumsanzeige, sowie IV-3 zur Darstellung des Wochentages. Die Uhr besteht aus einem Mainboard mit Spannungsversorgung, CPU, MP3-Modul sowie den Treiberbausteinen für die Röhren. Die Uhrzeit wird über einen extern angeschlossenen DCF-77 Empfänger eingestellt und synchronisiert. Später wird das Board noch mit einer Realtimeclock-Schaltung erweitert.  Die Energieversorgung für die gesamte Schaltung kommt von einem kleinen Steckernetzteil mit 12V/1.2A. Die gesamte Stromaufnahme beträgt ca. 450mA. Als besonderes Feature besitzt die Uhr ein kleines MP3-Soundmodul mit MicroSD-Kartenslot. Dieses erhält vom Microcontroller über die serielle Schnittstelle zu jeder viertel-Stunde ein entsprechendes Kommando, ein MP3 File abzuspielen. So wird die viertel Stunde mit einem „Gongschlag“, die halbe Stunde mit zwei und die dreiviertel Stunde mit drei „Gongschlägen“ signalisiert. Zur vollen Stunde wird die entsprechende Uhrzeit angesagt.

Die gesamte Schaltung ist in ein Alu-Acryl Gehäuse eingebaut. Alle Formteile sind gefräst und werden  verschraubt. Ein Video vom Aufbau und der Funktion ist unten zu sehen:

Aus der Nixie Ära, noch mehr VFD

Loading

 

img_6297In einem früheren Blogeintrag habe ich einen Uhrenbausatz vorgestellt, dessen Anzeigenelemente mit VFD-Röhren aufgebaut sind. Diese Vakuum-Fluoreszenz-Display Röhren stammen, wie auch die Nixieröhren, aus den 60iger, 70iger Jahren und wurden dann von den LED 7-Segment Anzeigen abgelöst. Doch der Reiz der glimmenden, in Glaskolben verpackten Leuchtziffern erobert heute wieder so manches Wohnzimmerregal. Über den damaligen Beitrag über den VFD – Uhrenbausatz von gr-projects, bin ich mit dem Konstrukteur und Hersteller dieses Bausatzes, Herrn Rother in Kontakt gekommen.  Herr Rother hat mir weitere Uhrenmodelle zur Verfügung gestellt, deren Auf- und Zusammenbau ich in Form kurzer Filme aufbereitet und dokumentiert habe. Die verwendeten Anzeigeröhren sind russische Röhren der Typen IV-11, IV-6 und IV-3.

Hier die Infos zu den Röhren:

IV-11:

  •  Glaskolben mit einer Höhe von 55mm und einem Durchmesser von 22mm.
  • Anzeigehöhe 20x13mm (HxB)
  • Heizspannung 1,5V bei einem Strom von 50-70mA
  • Gitterspannung ca 25-30V
  • Lebensdauer ca. 5000h

IV-6:

  • Glaskolben mit einer Höhe von 40mm und einem Durchmesser von 12mm.
  • Anzeigehöhe 11x5mm (HxB)
  • Heizspannung 0.85-1.15V bei einem Strom von 50mA
  • Gitterspannung ca 25-30V
  • Lebensdauer ca. 5000

Hier nun die Aufbauvideos zu den Uhrenmodellen:

 

 

VFD – Uhrenbausatz

Loading

dsc_2772

Uhren und Zeitmessgeräte, auch die nicht-mechanischen, gehören zu meinen Interessengebieten. Vor allem, wenn die Uhrzeit  mit optisch schönen Anzeigen dargestellt wird, bin ich Feuer und Flamme. Dazu zählen Nixie-Anzeigeröhren und auch die VFD-Röhren. Über letztere handelt dieser Blogeintrag. Hier hat Herr Günter Rother (www.grother.de) einen sehr schönen Bausatz zusammengestellt, der schnell und einfach zusammen zu setzen ist. Es sind alle zum Aufbau benötigten Teile enthalten und man kann gleich loslegen.

dsc_2766

Auf einer zweiseitigen, gelayouteten und mit Lötstoplack versehenen Platine mit den Abmessungen 100×50 mm findet die Uhrenschaltung Platz, bei der als Anzeige für jede Ziffer je eine 7-Segment VFD-Röhre verwendet wird. VFD bedeutet hier Vakuum-Fluoreszenz-Display. Die Funktionsweise ist hier nicht wie bei Nixieröhren eine Glimmentladung, sondern wie bei Elektronenröhren, eine, von einer direktbeheizten Kathode emittierte Elektronenwolke, die auf einer Leuchtschicht – Anode (Phosphor) auftrifft.dsc_2773 Die Spannung zwischen Kathode und Anode liegt hier üblicherweise zwischen 20V und 50V. Mit einem Steuergitter vor den Segmenten können die Elektronen gezielt gebremst werden. Somit ist eine Ansteuerung einzelner Segmente möglich.

Treiberbaustein für die IV-3 VFD-Röhre ist ein LB1240 Display Tube Driver IC, der acht voneinander unabhängige Darlingtonstufen beinhaltet. Jeder Ausgang ist in der Lage 30mA bei maximal 55V zu treiben. Die Eingänge des LB1240 werden über einen Atmel AT89C2051-12PU angesteuert und mittels vier Transistoren wird jede Röhre per Multiplexing geschaltet. Getaktet wird der Atmel mit 11.0592Mhz. Ein DS18B20 Temperatursensor ist ebenfalls in den Bausatz integriert, um auch die Temperatur anzeigen zu können. Der DS18B20 ist ein 1-Draht Digital-Temperatursensor, einstellbar  in 9 bis 12 Bit-Auflösung   an 5V Spannungsversorgung und mit einer Ansprechzeit von 94ms bis 750ms, je nach Auflösung. Der Mikrocontroller ist bereits mit der Firmware für die Uhr geflashed und direkt einsatzbereit. Die IC´s sind gesockelt, 1/25W Kohleschichtwiderstände auf Band und sogar alle Schrauben, Abstandhalter und vorgefertigte Acrylglasplatten für ein finales Gehäuse sind vorhanden.

Die gesamte Schaltung wird mit einem 50Hz Steckernetzteil mit konventionellem Eisenkerntransformator versorgt. Die Spannungen an Board werden mit einem 7905 Linearregler für die 5V und einem fertigen DC/DC Convertermodul (Step-UP-Wandler) für die ca.30V Anodenspannung erzeugt. Bedient wird die Uhr über zwei Mikrotaster, mit denen Stunden und Minuten eingestellt werden können.

Ein kurzes Video über den Zusammenbau und die fertige Uhr kann hier angesehen werden:

 

Drehpendeluhr mit Sperrschwingerantrieb

Loading

sperrschwinger_drehpendelEin ein Euro-Schnäppchen aus eBay steht dieses Mal auf dem Tisch. Da es ja laut Kalender noch Winter ist, eine perfekt passende Freizeitaufgabe für diese Jahreszeit. Auf dieses Teil habe ich nur wegen der Glashaube mitgeboten, da ich  die eigentlich als Ersatz für eine andere Uhr benötige. Aber als ich dann bei einem Euro den Zuschlag erhielt und das Ding geliefert wurde, stellte sich heraus, dass es gar nicht so schlecht aussieht und vor allem zum Großteil aus Messing besteht. Einzige Ausnahme ist das Uhrwerk selber.

Es ist das Uhrwerk einer Haller – Drehpendeluhr mit Batterieantrieb. Allerdings noch kein Quarzwerk, bei dem das Drehpendel nur zur Zierde mitläuft, sondern ein sogenannter Sperrschwingerantrieb. Hier stellt das Pendel zusammen mit einer Spulenkonstruktion und einem Kondensator , die zeitbestimmende Konstante dar. Ein Sperrschwinger ist eine elektrische Oszillatorschaltung, die mit Hilfe einer gekoppelten Doppelspule und einem elektronischen Schalter (Transistor, oder früher Elektronenröhre) die elektrische Energie in einen Schwingungsvorgang umwandelt. Dabei dient ein Kondensator in Serie zu einer Wicklung als Zeitkonstantengeber. Die Spule als Steuerspule für den Transistor, und die Koppelspule als Arbeitsspule für einen drehbar gelagerten Permanentmagneten.

sperrschwinger_schaltung
Funktionsschema des Sperrschwingers

Das funktioniert folgendermaßen: Beim Einschalten wird der Kondensator geladen. Da er in Serie zur Spule liegt, fließt durch ihn und die Spule der Ladestrom. Dieser steuert zum einen den Transistor aus, der wiederum die Koppelspule mit Energie versorgt. Diese Energie hat ein Magnetfeld zur Folge, das wiederum den Permanentmagneten abstößt. Dieser dreht sich nun von der Spule weg.

Nach diesem ersten Impuls ist nun aber auch der Kondensator aufgeladen und es fließt kein Strom mehr. Der Transistor sperrt und die Koppelspule hat nichts zu tun.

Da sich aber der drehbare Magnet, der auf unserer Drehpendelachse befestigt ist, noch dreht, kommt er nun irgendwann wieder an der Spule vorbei. Dort induziert er einen negativen Impuls, der der Ladung des Kondensators entgegenwirkt. Der ist also wieder entladen. Jetzt will er sich natürlich gleich wieder aufladen und lässt einen Strom durch ihn selbst und die Spule fließen. Das wiederum steuert den Transistor aus, der wiederum lässt Strom durch die Koppelspule fließen… die wiederum baut ein Magnetfeld auf … das Magnetfeld drückt den Permanentmagneten der Pendelachse wieder weg … usw., usw.

Jetzt muss man nur noch die sich drehende mechanische Energie der Pendelachse zum Antreiben einer Uhrenhemmung verwenden. Und voila, man hat eine Uhr.

sperrschwinger1Die Uhr kam beinahe in einem Stück bei mir an. Einzig im Uhrwerk war kein Rädchen mehr an seinem Platz – hier hatte der Vorbesitzer wohl erfolglos versucht einen Fehler zu beheben. Also habe ich zuerst einmal die paar Plastikzahnrädchen wieder an ihren Platz gesteckt und alles sauber zusammengebaut. Das auf einem Permanentmagneten gelagerte Pendel drehte sich auch nahezu widerstandfrei. Also eine Batterie hinein und … nichts. Keine Bewegung, absolut keine Reaktion. Also wieder alles demontiert und die Platine mit den Koppelspulen unter die Lupe genommen. Und siehe da – eine Unterbrechung der grünen Spule – hier war der Draht gerissen.

sperrschwinger2Glücklicherweise ist das an einer sehr gut zugänglichen Stelle, sodass eine Reparatur einfach war. Nachdem nun beide Spulen wieder in Ordnung waren, ging’s an den erneuten Zusammenbau. Gleich nach dem Einlegen der Batterie war sofort zu bemerken, wie sich nun der Permanentmagnet des Schwingers wieder von der Spule abstößt.

 

 

 

In dem folgenden Filmchen ist das Arbeitsprinzip der Mechanik dargestellt:

Das hier sind alle Teile der Mechanik, aus der die Uhr aufgebaut ist. Also ein sehr einfaches Werksperrschwinger_drehpendel_teileDas hier ist die Mechanik mit der Hemmung (alles in Plastik) ohne die Antriebseinheit:

sperrschwinger_mechanik

 

 

Schatz Drehpendeluhr

Loading

DSC_2159Das neue Jahr hat gerade erst begonnen und schon ist wieder eine kleine Arbeit der letzten Tage online. Dieses Schätzchen habe ich wieder als „überholungsbedürftig“ günstigst ergattert. Die Uhr war in einem relativ guten Zustand.  Auf den ersten Blick fehlte nur ein Stück der Torsionsfeder, bzw. war sie abgerissen und die Reste total verdrillt und geknickt. Die Befestigungsteile der Feder waren glücklicherweise da.

Die Uhr dürfte einst in einem starken Raucherhaushalt gestanden sein, denn sie roch wie ein voller Aschenbecher und die Glasscheiben waren mit einer gelblichen Nikotinschicht überzogen. Also, wie üblich nach der ersten Sichtung erstmal alles zerlegen und mit Reinigungsbenzin und Pinsel bzw. auch Glasfaserpinsel die Einzelteile von den verharzten Ölresten und Nikotinschichten befreien. Leider meinen manche Besitzer, dass viel Öl im Räderwerk auch viel hilft und alles wieder flutscht. Deshalb wird anscheinend gern und viel mit allem was griffbereit ist, geschmiert. Das gibt dann bald eine schöne, klebrige Schicht, die dann genau das Gegenteil eines leichtlaufenden Rades bewirkt. Auch ist die Zugfeder interessanterweise immer bis auf den allerletzten Anschlag aufgezogen … Also zuerst immer Feder entspannen und dann mit dem Demontieren beginnen.  Die Reinigung war diesmal recht mühsam und langwierig… ich werd´mir echt einmal ein Ultraschallbad organisieren müssen (in den Foren liest man immer wieder davon – scheint ja ein perfektes Reinigungsgerät zu sein…)

DSC_2154Doch irgendwann war alles gereinigt und ich konnte das Werk wieder zusammenbauen. Es handelt sich übrigens um eine „Schatz 400“ mit der 53 auf der Rückenplatine. Das Ziffernblatt  hat einen Druckmesser von 80mm. Die Uhr ist in einem Laternengehäuse mit drei Glasscheiben untergebracht und hat die Gesamtabmessungen von: 13x11x20cm (BxTxH). An der Bodenplatte befinden sich drei in der Höhe einstellbare Schrauben um die Nivellierung durchzuführen. Ein Hebel an der Bodenplatte fixiert bei Bedarf das Pendel.

Nach dem Zusammenbau fehlte jetzt nur noch eine neue Pendelfeder. Da ich hier keine Ahnung hatte, welche Federstärke für diese Uhr notwendig ist, habe ich in den Foren gesucht – und Dank eines sehr hilfsbereiten Forenmitgliedes – die passende Info und gleich einen Bestell-Link bekommen. Die Schatz 400 53er benötigt eine ‚Horolovar 0.0023″ = 0.058mm‘ Feder.  Zufälligerweise hatte ich noch genau die passende in meiner Sammlung und konnte die Uhr komplettieren. Im Uhrenfedern habe ich eine Liste mit gängigen Uhren und den dazu passenden Federn.

Jetzt kam die sehr zeitaufwendige Einstellarbeit. Die richtige Position des Ankers und die Nulllage des Mitnehmers auf der Feder sowie dessen Position ist ausschlaggebend für ein fortlaufendes Werk. Ansonsten pendelt die Uhr aus und bleibt nach einiger Zeit stehen. Läuft das Werk dann einmal, kann mit der Ausladung der Pendelgewichte die Ganggenauigkeit eingestellt werden. Ich mache das immer im „Eintagesrythmus“ und sehe um wieviel schneller oder langsamer sie in 24 Stunden läuft und stelle dann tageweise nach. Nach ca. einer Woche läuft sie dann schon ziemlich genau…

DSC_2160

DSC_2156

 

DSC_2157

DSC_2155

 

Und hier ein kleines Video von der fertig restaurierten und wieder laufenden Uhr:

 

Die Binäruhr

Loading

Im Rahmen der beruflichen Tätigkeit ist, als Bausatz für FH-Veranstaltungen und Schnuppertage für Schüler konzipiert, eine Uhr entstanden. Diese Uhr zeigt die Zeit aber nicht in analoger Form, mit Zeigern, auch nicht in digitaler Form, mit Siebensegment- oder LCD-Anzeige an, sondern mit Leuchtdioden im Dualen Zahlensystem.

Man kennt solche Uhren schon in vielfachen Ausführungen (als Binäruhren). Es gibt sie mittlerweile bereits auch als Armbanduhr. Das bedeutet, die Zeit wird nicht als Ziffer, sondern als Leuchtcode einer Reihe von Leuchtdioden angezeigt. Der Leuchtcode wird nach dem dualen (binären) Zahlensystem auf der Basis 2 ermittelt. Dieses Zahlensystem ist der Standard in der Digitaltechnik, da hier mit dem Zustand „0“ und „1“ (AUS und EIN, oder LOW und HIGH, oder Spannung, keine Spannung, oder eben Leuchtdiode LEUCHTET, oder LEUCHTET NICHT) gearbeitet wird. Die Tabelle zeigt die Funktionsweise des binären Zählens. So kann zum Beispiel mit 4 Bit (zB. 4 Leuchtdioden) eine Dezimalzahl von 0 (alle AUS) bis 16 (alle EIN) also 2^4 (2hoch4) dargestellt werden.

Bit3
(2^3)
Bit2
(2^2)
Bit2
(2^1)
Bit0
(1^0)
Dezimal
AUS AUS AUS AUS 0
AUS AUS AUS EIN 1
AUS AUS EIN AUS 2
AUS AUS EIN EIN 3
AUS EIN AUS AUS 4
AUS EIN AUS EIN 5
usw…        
IMAG1730
Die Frontseite der Binäruhr

Eine Uhr mit der Darstellung der Zeitinformation mit Reihen von Leuchtdioden habe ich hier gebastelt. Die LED-Reihen zur Anzeige sollten im Kreis angeordnet werden, um die Uhr im ersten Blick nicht als Binäruhr zu erkennen. Sie sollte aussehen wie eine herkömmliche Uhr, wo anstelle der Zeiger einfach Leuchtdioden im Kreis laufen. Eine tolle Umsetzung der Frontplattenbeschriftung- und grafik hatte hier ein Kollege aus dem Grafikdesign.

Von der elektronischen Seite her, habe ich einen MEGA8 Microcontroller von Atmel eingesetzt, der die insgesamt 18 Leuchtdioden über ein 6×3 Multiplexing angesteuert. Dabei werden 5 Leds für die Anzeige der Stunden, 6 Leds für die Anzeige der Minuten und 6 Leds für die Anzeige der Minuten verwendet. Die verbleibende Led dient zu Anzeige eines „Betriebsmodus“ (Läuft die Uhr oder ist sie im Einstellmodus).

schaltplan
Schaltplan der Uhr

Ein weiterer Ausgang dient zur Ansteuerung eines kleinen Lautsprechers (für. akkustische Ausgaben wie Wecker etc.). Zwei Ports des uC dienen als Eingänge für einen Konfigurationstaster und einen Kontakt für einen Schüttelschalter. Der Schüttelschalter kann dann beispielsweise als Quittierung des Alarms eingesetzt werden.

Die Stromversorgung kommt praktischerweise von einer USB-Quelle, die mittlerweile jeder irgendwo zur Verfügung haben sollte.

IMAG1734
Fertig zusammengebaute Binäruhr

Das Layout und der Aufbau der Schaltung wurde im Design ausschließlich mit bedrahteten Bauteilen erstellt, um einen einfachen und unkomplizierten Zusammenbau zu realisieren. Die Software selbst wurde mit AVR Studio und dem WINAVR Compiler erstellt. Der Uhrentakt wird durch Teilen der internen Oszillatorfrequenz (gesetzt auf 1MHz) des Microcontroller erreicht. Das ist zwar nicht die genaueste Variante, funktioniert aber auch und spart einen weiteren Taktgenerator. Die Platine selbst wird nach dem fertigen Bestücken in einen gebogenen Kunststoffwinkel gesteckt, der mit dem cool designten Weckerlogo auf der Frontseite beklebt ist. Das Einstellen der Uhr- und Weckzeit kann einfach durch einen auf der Rückseite der Platine angebrachten Taster realisiert werden…

IMAG1727
Uhrenplatine bestückt

 

 

 

 

 

Die Fertigungsdaten kann man hier herunterladen. Darin befinden sich die Gerberdaten und das hex-file zum Flashen des ATmega8.

Drehpendeluhr

Loading

Eine mit viel Geduld verbundene Arbeit ist das Restaurieren bzw. Reparieren einer Drehpendeluhr.

Bei einer Drehpendeluhr handelt es sich, wie der Name schon sagt, um eine mechanische Uhr, bei der der Takt von einem, um die eigene Achse rotierenden Pendel, erzeugt wird. Die Schwingungsenergie wird hier mit einer Torsionsfeder (Horolovar Feder), sprich einem sehr feinen Stahldraht spezieller Legierung, übertragen.IMAG1268_1 Die Drehpendeluhr wird auch Jahresuhr genannt, da durch die sehr langsame Schwingung und entsprechende mechanische Umsetzung der Hemmung, ein Aufzug des Federspeichers nur einmal in 300-400 Tagen notwendig ist.

Das erfordert natürlich auch eine gewisse Präzision der mechanischen Komponenten. Wenn hier etwas nicht korrekt eingestellt ist, pendelt die Uhr nach einigen Minuten aus. Auch die Feineinstellung der Ganggenauigkeit erfordert einiges an Geduld. Und eben genau so eine Uhr hat es mir angetan. Bei einem Online-Auktionshaus habe ich günstig eine ‚defekte‘ aber von den Bauteilen her vollständige Drehpendeluhr erworben und sogleich begonnen, sie zu demontieren und die Teile zu reinigen.

IMAG1265
Rändelschraube für den Pendeldurchmesser

 

IMAG1266
Pendelfeder

Nach diesen Arbeiten gings wieder an den Zusammenbau. Die Horolovar Feder wurde durch eine Neue ersetzt. Nun gings an die Einstellarbeiten. Zuerst musste ich herausfinden, wieviele Pendelschwingungen, genauer gesagt Halbschwingungen, die Uhr in einer Minute machen soll. Bei meiner Uhr (eine Kundo) sind dies acht Halbschwingungen. Am einfachsten ist es, mit einer Stopuhr die Dauer bis zum Erreichen der 8. Halbschwingung zu messen. Liegt die gemessene Zeit zum Beispiel über einer Minute, so läuft die Uhr zu langsam und muß mit der Rändelschraube (diejenige, die die Position der Pendelgewichte im Durchmesser verändert) eingestellt werden. Dreht man die Rändelschraube im Uhrzeigersinn, so wird die Uhr langsamer und gegen den Uhrzeigersinn natürlich schneller.

Hemmung mit Ankerplatte
Hemmung mit Ankerplatte

Es soll eine Ganggenauigkeit von +/- 1 Minute pro Monat möglich sein. Also eine Abweichung von 12 Miuten im Jahr. Dies setzt natürlich optimale Umgebungsbedingungen voraus. (gleichbleibende Temperatur und Luftfeuchtigkeit, sowie einen festen, schwingungsfreien Stand)