Tag Archives: Tomy

“Tricky Traps” restoration

Loading

In this post, I’m going to take a look at the restoration – or rather repair – of a handheld game that I recently received for review. It has the name “Tricky Traps”. This means something like “tricky or tricky traps”

The game “Tricky Traps” by Tomy is a mechanical game of skill that was originally released in the 1970s. It consists of a maze-like playing field in which the player must navigate a small metal ball through a series of obstacles and traps. The aim of the game is to successfully maneuver the ball through the maze to the finish without it falling into one of the many traps. There are five balls available. The game is timed.

Tricky Traps

Game mechanics:

  • The player starts the game with a rotary knob, which sets a small electric motor in motion. This motor drives the “traps” and also the rotary knob itself via a gearbox. This is how the “timer” is realized. Once the rotary knob has completed about three quarters of a turn, the motor stops again and the game is over. This is solved by a contact spring, which is pressed down onto a mating contact by a small bar at the bottom of the rotary knob.
  • Once the game has started, the red button can be used to release a ball into the track. The white button at the bottom is the actual and only game button. It lifts the ball with a small cylinder so that it can move through the various parts of the playing field. You have to do this with the right timing.
  • There are numerous obstacles on the playing field, such as rotating disks, small ramps, narrow passages and a rotating magnet that can stop the ball or cause it to fall into a trap.

The colorful design is typical of the mechanical games of the 70s and 80s. It is made of plastic and the moving parts are usually brightly colored.

The technical problems that occur often in such old games are:

  • leaking batteries, which usually cause corrosion and destruction of the contacts
  • Brittle plastic, which mainly occurs with gearwheels that are mounted on brass shafts and therefore start to slip. This also means that housing gears often no longer hold together properly.
  • Electric motors whose brushes are worn so that they no longer turn
  • Resinous grease and oils that make moving parts sluggish
  • Wires and electrical connections that are corroded and broken

All of these points can be found very often during restoration and must be fixed. This can also be done more or less easily. After carefully opening and inspecting the appliance, I actually start by completely dismantling and cleaning the parts. Then I try to repair any broken plastic parts. Here I use various adhesives as far as possible. Sometimes it is also necessary to reproduce a part with a 3D printer. Of course, this assumes that enough of the original part is still available to reconstruct it accurately. The electrical components of these devices are the easiest to repair, as there are usually no electronics with any components with ICs that are no longer manufactured.

Revealing the parts after disassembly

Gearbox
Assembly after cleaning

 

“Ball” button to start the ball

Tomy Racing Cockpit – electrical wiring

Loading

Due to some inquiries regarding the electrical wiring of the Tomy Racing cockpit, I sat down and drew out the wiring. There are apparently many contemporaries who still find toys from the 80s in their basements, attics, etc. and repair them again. With the Tomy Cockpit it happens again and again that the thin wires break off when they are dismantled or the soldered joints no longer hold, often forgotten cells in the battery compartment have dissolved and the contacts and soldered joints are corroded as a result.

I show a sketch of the wiring in the following figure.

By the way, I only use two 1.5V cells, since the parallel connection of two cells each in the battery compartment is nonsense, as the cells are guaranteed to have different internal resistances and thus comfortably discharge each other even when they are not used.

In order to be able to identify the components shown in the sketch in the racing cockpit, I also took photos of them.

This is the back of the “switch” that represents the cockpit’s ignition lock and with which the system is switched on.

I called this part “breaker” because it is a normally closed contact that is triggered by a small “gearwheel” and causes the drum lighting to flash. That happens when you leave the “street”.

These are the connections of the battery box. I doubt whether the colors of the wires are the same for all versions. Because in the devices that I have since revived, different wire colors were installed.

With this information it should now be a little easier to recreate the broken wires and solder joints.