All posts by ingmarsretro

The old repair shop

Loading

While browsing the digital archives, I noticed the following pictures again.
Meanwhile, more than ten years have passed since I had to initiate the end of the television repair shop.

Look in the old workshop

Almost at the same time as the widespread use of flat screen televisions, orders were down. Except for a few customers, who insisted on retaining the old technology from ideational values, hardly anyone could fix it. Due to wage side costs and realistic, minimal profit-oriented pricing, it was just too expensive for people. If, for example, a repair of the high-voltage power supply of a television (replacement of line transformer, driver transisor and various capacitors and resistors) a price of about 90 euros assumed, that was again borderline, almost too expensive. If one considers that for these sum the parts scarcely 40 euro in the EK cost, then for the remaining 50 euro the error had to be searched for and found, everything to be expanded and reinstalled.

The unit had to be cleaned inside (often we got “boxes that collected the dust and nicotine of twenty years”.) Also, a careful test run should be done, so what about the 50 bugs? Hired labor costs more than half of non-wage labor costs. How many devices do you have to repair during the day in order to cover your costs?
 
 
dust accumulation

Sometimes you could see curiosities. Since one or the other owner of the TV has ever tried even as a repairer and found a faulty network backup. – “No problem, is only a backup …” Which is then wrapped in the absence of a suitable new backup and knowledge simply with cigarette paper …

 
 
 
 
 
 
 
“expert” repair of the customer
 
“Then it works again …” which turns out to be not quite correct. After inserting “it pops and flashes” and nothing was more … So the device came to me on the desk … “Why is the repair so expensive? – was only a fuse broken – I know myself out there – I am an electrician “You can hear such sayings then.

The 80s and the Watchman

Loading

In 1985, the company Sony brings a small, compact and above all mobile TV on the market. The Watchman Voyager FD20-AEB. It has been designed to be used everywhere. For example, in the car, on vacation, just everywhere.
It is not a TV with LC display, or TFT, or LED display. No. The TV brings the image by means of a cathode ray tube (Braun tube) to the eye of the beholder. And not in the brilliant color variety and resolution of today’s receivers, but in black and white (BW).

 

 

The screen diagonal of 4.7 cm can be displayed with the help of a clip-on magnifier still a little enlarged.
The receiver is a multinorm receiver that covered the European television standards.

It was tuned manually by means of a side-mounted “rotary wheel”. The reception tapes VHF / UHF can be selected with a slide switch. Of course, only analog TV reception is possible.

source drawing: Frank’s Taschenfernseher.de

 

 

 

Settings such as brightness, contrast and also the image capture can be carried out on the underside of the device.

 Tunermodule and flattube

The power supply comes from four 1.5 volt AA batteries or from a power supply. At a power consumption of 2 watts is relatively fast on battery operation. The high voltage generation and heating of the flat screen tube is probably one of the biggest consumers of electricity.

The structure of the boards is very discreet. There are hardly any integrated circuits. The large tuner module can be seen on the left in the picture. The supply of signals takes place exclusively via a telescopic rod antenna. A built-in speaker provides the sound. Optionally, a jack for connecting a headphone is installed.

today there is only more noise to be received

before Gameboy and Playstation

Loading

 
A trend of the 80’s were  mobile video games. As in the Gameboy, PSP and in the meantime also smartphone times, it was quite practical to have a small, compact game console with you as a young person.

As an example, I dug up one of these “mini consoles”. It is a popular video game called “Trick o Tronic” with a small LCD screen. The difference to today’s LCD displays is that the game image does not consist of individually controlled pixels, which in total show the game figures, but each figure represented in the image was a kind of controllable symbol, so to speak. So, for example, a male had to run from left to right, so every movement and position was present as a separate symbol.

 

The background of the field was simply an image (photo or drawing) behind the LCD that represented the scene. The whole game was powered as well as the former digital clocks, with a 1.5 volt button cell. The sound of the game came from a piezo loudspeaker that could play beeps. (but only with one frequency)
 

from Video8 to Digital

Loading

 

Now, during the holidays, it is a bit of time to copy the time stored on magnetic tape image and sound to new media.

The video recordings of the early 90s were still analogue on 8mm tapes instead. No, not Super8 (that was the movieformat like in cinema those times but much smaller), but on Video8 or HI8 (the better quality variant – comparable to VHS and SVHS, where the “HI” or the “S-” technically by a separate recording of the Y – and C- signal was realized (Y = luminance, so brightness information and C = chrominance, ie color information) .The recording itself, took place on magnetic tape in helical-scan technology (as well as VHS, U-Matic, Betamax, BetaCam, Video2000…). Except that the tape just has a width of 8mm and not 1/2 “or 1 inch, as with other systems. Also the sound is recorded in the helical scan.

In order to get the old records into a digital format that is common today, you need the following four things.
First, the tape (cassette) with the probably exciting content of days gone by. Next, a player is needed.

Here I got myself a then professional HI8 recorder, with which the playback of the tapes should work. The recorder is called EV-S9000E from Sony and came back to the net after almost twenty years break. After a short while, the smell of putrid fish was noticeable. An indication that some electrolytic capacitors of the SMD design are no longer in order. (A well-known problem with devices of older age and elko’s smaller, more compact design.) Nevertheless, I left the recorder on the net and made myself smart, which functions failed because of the numerous, not value-accurate components. So the power supply started and delivers at least. The flourescence indicator has failed. The 60V anode voltage seems to be missing here, no matter the tape drive works, so bring the analog signal to the computer.
 
 
For this I got myself a video to USB converter of elgato. Quickly installed the necessary software and inserted the first tape and pressed “Play”. The picture, however, was a disaster. All lines were totally distorted and offset. (As if the line frequency was wrong). So, before I put everything together again and disappear with the recorder in the workshop, I have again seen in the Config menu of the recorder. There I switched all AUTO options to manual, the television standard on PAL geknüppig and last but not least the TBC (TimeBaseCorrector) off. Lo and behold, the TBC is over too. Actually he should generate an absolutely stable time signal for the video line, but with defective electrics this is no longer possible.
Since I do not have ten tapes to digitize, the recorder should hold out …

Amiga – Genlock cable

Loading

Some time ago I wrote a post about the Amiga Genlock “VESONE”. It can be found under the title “Amiga and Genlock”.(link)

Apparently there are still some people who own such a device and want to use it again. But since, as with me, the necessary cables, software etc. are not necessarily stored where the device is, it can be difficult. I thought to myself that it doesn’t matter, because what is the Internet for – but far from it. You won’t find anything. I noticed that now when a blog visitor asked me about the pinout of the RGB to genlock cable. I didn’t find anything on the net. But deep in the boxes in the cellar in various cable boxes, I was lucky. The cable appeared. In order to share the pin assignment with other retro fans, I have drawn out the pin assignment and put it online here.

So here are the pictures and the pinout (Amiga_VESGenlock_Cable)

Electronics experiment box of the 80s

Loading

From my youth, these three red boxes came to this article. A relic from the basement of my parents’ house. These are the electronic experiment boxes from Busch. These are the boxes “Compact studio 2060”, the “supplementary package 2061” and the “digital-technik 2075” box.

Busch electronic 2060, 2061 und 2075

The kits are in a relatively good condition, although I’ve made plenty of it as a budding teenager.
The first, so the basic box 2060, I got in the elementary school once for Christmas (must have been so about 1979 – 80), because the predecessor modular system of Philips for lack of knowledge and my urge to experiment unfortunately did not bring the success. (There was one of the transistors quickly broken and nothing worked anymore …) So my parents have looked for a new modular variant, with which I came as an 8-year-old then also coped perfectly. (Of the Philips kits, unfortunately, only fragments and parts of the base plate exist – but I’m currently in the bay looking for a copy of this kit.)
Back to the bush system:

As you can see in the photo, just about all parts are still present. Neatly I have then combined the two boxes 2060 and 2061 to a box. (Unfortunately)

The company Busch advertised at that time with the following slogan:
“Experiment without prior knowledge!”

The instruction books were structured in such a way that one quickly came to a sense of achievement and could then also think about the technical background. From the description of the boxes:
The “compact studio” 2060 offers about 40 experiments and circuits, such as: “Electronic mini organ, alarm and rain warning systems, automatic flashing and timer, tone generator and audio amplifier,
Sensor key, voltage tester, remote-controlled electronic relay, siren and room switching, light organ principle circuit. ”
One year later, I got the expansion box 2061. With that, experiments such as radio receivers were possible. From the MW and LW receivers to the FM FM receivers, where the inductors for the oscillating circuits themselves had to be wound (of course strictly according to plan).

Also, the 2061 is in good condition, unfortunately, the plastic retaining clips of the smoked glass plastic cover are broken, so that it rests only on the housing.

Here is now plenty of room for the multitude of experiments. Nicely tidied up, with a media panel with built-in potentiometer, variable capacitor for the receiver tuning stories. The loudspeaker is now also integrated in the housing, as well as a slide switch, a moving coil meter and a 5-pin diode socket. (That was a standard for audio connectors at the time).

 

Again, I tinkered in my childlike carelessness and integrated the LED and a 3.5mm and a 2.5mm jack into the control panel. Unfortunately, this does not look very professional and destroys the originality of the kit.

Another step was the entry into digital technology with the box 2075.
Here experiments such as: a 1-bit memory memory, counters with 7-segment LED display, random generators, etc. are built.

The power supply was provided for all experiment boxes with a 9V block battery. As an option, Busch also offered a power supply unit at that time.

2.5 inches earlier and today

Loading

Before it lands in the archive, I have to put it here too …
It is a hard drive from the 90s (exactly 21.10.1991) – namely a 2.5 inch disk from Seagate with the incredible storage capacity of 85.3 MB (yes MEGABYTE). In comparison, a 160 GB (Gigabyte) disk from Fujitsu in 2007.

The Seagate disc with the designation ST-9096 was installed in a Commodore Amiga 1200. It kept the complete Amiga OS 3.1 including plenty of applications space. At that time you could not get that 85MB so easy.
To the technical data: If you want to format it today, you should know the following parameters: 980 cyl, 10 heads, 17 sectors gives a capacity of 85,299,200 bytes. The HDD has a power consumption of 2W in read / write mode and 1W in idlemode. 300mW still consumes it in sleep mode.
Interesting is perhaps even the size comparison to current records.
 
The interface complies with the IDE standard (Integrated Drive Electronics).
Größenvergleich
 /- 44-pin I/O Connector (* see below)
                                      |                     o o
                                    ::::::::::::o::::::::1  o o
                               =P=W=A===========#==================
                                                |           | |
       pin-20 removed for keying ---------------/           | |
                                                            | |
                                                            | |
 Drive is Master, no Slave drive present ------------------ 0 0
 Drive is Master, Seagate Slave drive present ------------- 1 0
 Drive is Slave to another ST9xxxA/ST9xxxA Master --------- 0 1
 Reserved Position (Do Not Use) --------------------------- 1 1

 * Drive uses +5vdc power supplied to the drive
   via the interface connector. The drive does
   NOT make use of a +12vdc power line.
   pin-41  +5vdc (Logic)
   pin-42  +5vdc (Motor)
   pin-43  Ground
   pin-44  Reserved

something for the home network

Loading

I recently updated my home network a bit and swapped the old Netgear ReadyNAS Duo for a QNAP TS420. Since the supplier wanted to have a “rating” on the article, I indulged myself in the five minutes and wrote a few lines …

 

I opted for Qnap based on a recommendation from an IT colleague and because I was also looking for a new, more powerful NAS that also supports WakeOnLan.
The NAS server should be able to be remotely powered up from the road. But this only works if the mains voltage of the NAS is not interrupted in the switched-off state (for example, by a Lan-controlled power strip). Furthermore, the router must support the forwarding of the MagicPacket.

A great feature of QNAP is TV streaming to the home network. You can plug a DVBT stick to one of the three USB sockets and then install a small tool on the NAS.
The Terratec Cinergy Piranha is NOT supported.


Unfortunately, very few DVBT sticks are compatible and recognized. So if you want to use this feature: Be sure to see the website for the compatible sticks. Of the APPs that can be installed on the QNAP, there’s plenty of … OwnCloud, all sorts of webapps and servers, downloaders … Everything is available on network protocols. There is also a quota management for each share or each user.


To the noise: The noise-volume of the NAS depends only on the volume and especially the temperature of the hard disks used. Here I would recommend to use only real server disks, otherwise the SMART status of the disks will quickly display an “ATTENTION” or “WARNING”.

A problem that occurs every now and then: After booting, sometimes the web service will not start and the NAS will not be accessible through the browser. The shares are always there. However, a reboot always fixes the problem. (at least until now 🙂 A future firmware update should fix the problem. (meanwhile this problem is solved due to updates 2015)

It is time…

Loading

Slowly, it is time to archive all the tech stuff you have to deal with on a daily basis and always had to do before, in a blog. Above all, when I’m in my parents’ house, I always find interesting things from my childhood and adolescence …
And since you are always on the move with a mobile office (ie a smartphone) anyway, you can try to capture these things … let’s see how far that works. The information here on the blog merely represents an ‘archival’ of small projects and events I’ve dealt with over time.
Remark: This is NOT a scientifically edited blog.

Incidentally, the picture here shows a small project with an old oscilloscope tube (Braun tube), which I wanted to bring back to life … more information will be available later.