Keysite Oszilloskop stirbt im Standby – Netzteilreparatur

Ein interessantes Problem ist bei der Messtechnik in den Labors meines Arbeitsplatzes aufgetreten. Mit „Messtechnik“ bezeichne ich die Ausstattung eines Laborarbeitsplatzes, für die Grundlagenausbildung. Von den Laborarbeitsplätzen gibt es insgesamt neunzehn Einheiten, die mit je zwei Labornetzgeräten, zwei Tischmultimetern, einem Keysite Signalgenerator und einem Keysite (Agilent) Oszilloskop der Serie Infiniivision DSO-X 20xx ausgerüstet sind. Alle Geräte sind netzwerkfähig und sind über LAN mit dem zugehörigen Arbeitsplatzrechner verbunden. So kann mit Hilfe unterschiedlicher Software (Agilent VEE, Matlab, LabVIEW etc.) auf die Messgeräte zugegriffen werden. Die Geräte wurden vor ca. drei Jahren angeschafft und ersetzt die fast zwanzig Jahre alte Laborausstattung. 

Doch nun ist der Fall aufgetreten, dass bei einem Arbeitsplatz das DSO-X2012A Oszilloskop kein Lebenszeichen mehr von sich gab. Es kommt gelegentlich vor, dass bei Laborübungen oder beim freien Arbeiten in den Labors einmal ein Studierender den Not-Aus Schalter des Arbeitsplatzes betätigt und ihn so stromlos macht.  Doch das war nicht der Fall. Alle an dem Arbeitsplatz angeschlossenen Geräte funktionierten, mit Ausnahme des DSO. Auch am Ende des Kaltgerätesteckers war Spannung zu messen. Also konnte das Problem nur am Oszilloskop selber liegen. Die Rückwand ist schnell abgeschraubt, ein Schirmblech entfernt und das Netzteil liegt frei. Gleich bei der ersten optischen Begutachtung ist der große Siebelko mit nach oben gewölbter Kappe aufgefallen. Aber einmal schön der Reihe nach.

Netzteil des Infiniivision

An den AC Pins vom Netzeingang war die Netzspannung zu messen, jedoch an keinem der Ausgänge des Netzteils eine Gleichspannung. Egal ob der Powerschalter des Gerätes ein- oder ausgeschaltet war. Die Vermutung liegt nahe, dass das Netzteil defekt ist.

Eingangssicherung

Zunächst wurde das Netzteil ausgebaut und beginnend von der AC-Eingangsseite untersucht. Die Printsicherung im Bereich des Netzfilters ist gleich als erstes defektes Bauteil aufgefallen. Es handelt sich um eine träge 6.3A/250V Sicherung. Da eine ausgelöste Sicherung immer einen Grund hat, abzuschalten, wurde weitergesucht. Die Netzgleichrichter waren ok, jedoch hatte der 100uF / 420V Elektrolytkondensator, der als Gleichspannungsglättung der Primärseite eingesetzt ist, thermisch schon einiges abbekommen und war aufgebläht.

originaler Elko 100uF /420V /105°C

Auch seine Kapazität war nicht mehr im Nominalbereich. Aber auch das war nicht direkt der Grund für das Auslösen der Sicherung. Der war dann schnell gefunden. Ein Mosfet der als Ansteuerung des Transformators dient, war niederohmig. Genauer gesagt er hatte einen Kurzschluss zwischen allen Anschlüssen.

Mosfet STP12NM50

Das folgende Bild zeigt die Einbaupositionen der Bauteile. Diese wurden erneuert. Der Mosfet wurde durch einen Originaltyp ersetzt und der Netzelko gegen einen 100uF / 450V /105°C Typ getauscht. Der ist zwar von der Bauhöhe etwa fünf Millimeter höher, passt aber problemlos in das Netzteil.

Einbaulage des Kondensators und des Mosfet

Auf der Rückseite der Netzteilplatine waren zwei SMD Widerstände im Bereich des Gate-Anschlusses des Mosfet defekt. Es handelt sich dabei um einen SMD Widerstand der Baugröße 0805 mit 5,11 Ohm und einen SMD Widerstand der Baugröße 1206 mit 2,0 kOhm. Das untenstehende Bild zeigt auch hier wieder die Einbaulage.

Einbaulage der defekten SMD Widerstände

Nachdem alle erwähnten Bauteile erneuert waren, wurde ein erster Funktionstest durchgeführt. Dieser war jedoch ernüchternd, denn das Netzteil arbeitete noch nicht. Die Sicherung blieb intakt und die primärseitige Gleichspannung stand stabil. Doch das Gate des Mosfet wurde nicht angesteuert – leider. Denn jetzt kam der aufwendige Teil der Reparatur. Auf der Netzteilplatine befindet sich, stehend eingebaut, eine weitere Platine, auf der mehrere Controller IC´s verbaut sind. Verfolgt man die Gate-Leitung vom Mosfet, so endet sie an einem Pin dieser Ansteuerungsplatine. Also muss diese raus.

Controllerboard ausgebaut

Dazu musste zuerst das Kühlblech entfernt werden. Dann wurde es etwas mühsam, denn das Controllerboard ist nicht über eine Stiftleiste oder Steckverbindung mit der Hauptplatine verbunden, sondern die Kontaktpins sind gelayoutet und ausgefräst. Das bedeutet, man muss die Auslötarbeiten sehr behutsam in Angriff nehmen, um die Leiterbahnen an den Enden der gefrästen Pins nicht zu beschädigen.

Mainboard ohne Controllerplatine

 

UC3842B

Als der Ausbau erfolgreich abgeschlossen war, konnte das Controllerboard begutachtet werden. Und siehe da, die vom Gate des Mosfet geroutete Leitung endet an Pin 6 eines kleinen IC´s. Dabei handelt es sich um einen UC3842B VD1R2G. Bei diesem IC war das Gehäuse gesprengt. Neben dem Controller IC, war auch ein SOT23 PNP-Transistor (PMBT 2907A) gestorben und an allen Pins niederohmig.

Einbaulage der defekten Komponenten

Nach dem Erneuern der defekten Komponenten, wurde das Netzteil wieder zusammengebaut und ein Funktionstest durchgeführt. Das Oszilloskop startete wieder und das Netzteil verrichtete seinen Dienst.

defekte Bauteile
Ergebnis nach erfolgter Reparatur

Interessant wäre es jetzt herauszufinden, warum das Netzteil nach gerade einmal drei Jahren seinen Geist aufgibt. Zumal die Oszilloskope nicht im Dauerbetrieb laufen, sondern nur während der entsprechenden Lehrveranstaltungen eingeschaltet sind. Dabei ist folgendes aufgefallen: Das Oszilloskop ist permanent an die Stromversorgung angeschlossen. Der Power-Schalter des Oszilloskops schaltet aber nicht die AC-Versorgung aus, sondern nur im Sekundärbereich des Netzteils die Controlleransteuerung. Das bedeutet, das Netzteil arbeitet im ausgeschalteten Zustand quasi im Standby-Betrieb. Und dabei ist uns aufgefallen, dass bei allen ausgeschalteten Oszilloskopen im Standby eine Verlustleistung auftritt, die die Mosfets und vor allem den 100uF Elko stark erwärmt. Das würde den aufgebähten, ausgetrockneten Elko und den darauffolgenden Tod der Netzteile erklären.  Um das zu verifizieren wurde bei mehreren Geräten die seit Tagen nicht eingeschaltet waren, die Temperatur an den Komponenten gemessen.

 
Thermofühler an der Elkooberfläche

Hier konnte folgendes festgestellt werden. Sowohl an der Oberfläche des Kondensators als auch am Kühlblech der Mosfets waren im ausgeschalteten Zustand Temperaturen von 56°C bis knapp 60°C zu messen.  Sollte das so sein ??

Temperaturmessung am Elektrolytkondensator

 

Hier noch die benötigten Bauteile:

  • Widerstand 5R11 0,1W 0,1% Farnell Nr.: 1872688
  • Widerstand 2k0 0.66W Farnell Nr.: 721-9844
  • PNP Transistor SOT23, SMD Stempel 2F Type PMBT2907A, 215 Farnell Nr.: 1626500
  • PWM Controller IC, UC3842B VD1R2G / 500kHz Farnell Nr.:2845218
  • Kondensator 100uF / 105°C / 450V
  • Printsicherung T6.3A 250V

Jun2019: Bestellnummern aktualisiert

 

 

 

Der multimediale Auftritt des „Elektronischen Würfel“

Bausatz“Elektronischer Würfel“

Im Rahmen meiner beruflichen Tätigkeit bin ich immer wieder bei In-House- Veranstaltungen mit dabei und zusammen mit meinen Kollegen versuchen wir, in Hands-on Workshops, den Besuchern Elektronik näher zu bringen.  „Die Besucher“ sind meist Jugendliche aus Schulen, die sich auf der Suche nach ihrem beruflichen Werdegang und ihren zukünftigen Möglichkeiten, informieren wollen. Dazu bieten wir aus dem Elektronik-Bereich beispielsweise Lötübungen an, in denen die Jugendlichen einen kleinen Bausatz zusammenbauen und in Betrieb nehmen dürfen. Einer dieser Bausätze ist der Elektronische Würfel.

In dem Beitrag werde ich jetzt nicht über den Würfel selbst berichten, sondern über dessen multimediale Aufbereitung. Genauer gesagt, soll ein kleiner Einblick hinter die Kulissen entstehen, wie mit geringstem Hardwareaufwand ein kurzes Aufbauvideo des Bausatzes erstellt wurde.

Das Set sieht wie folgt aus: Auf dem Arbeitstisch wird ein weißer Papierhintergrund angebracht, der wie bei Photoshootings die Wand und den Boden bedeckt. Der Übergang von Wand zu Boden ist in einem großzügigen Bogen ausgelegt. Man kann sich das wie eine Quarter-Pipe vorstellen.  Das zu filmende Objekt wird dann im vorderen Bereich auf dem weißen Boden platziert. Vom Objekt zur Rückwand sollte ausreichend Platz sein, sodass es beim Ausleuchten dann keine Probleme mit Schatten auf der Rückwand gibt. In diesem Fall ist es einfach, da der Bausatz nicht sehr groß ist.

Anordnung des Hintergrundes

Die Ausleuchtung, der mitunter wichtigste Teil, für eine Bildaufnahme war hier etwas Bastelei. Normalerweise verwendet man zum Ausleuchten Videoleuchten mit einstellbarer Farbtemperatur bzw. Dauerlichtsoftboxen.  Für diese Aufnahmen hatte ich aber nur eine Kamerakopfleuchte und die „normale“ Arbeitsplatzbeleuchtung zur Verfügung. Aber mit einer Diffusorplatte für das Kopflicht (das zumindest in der Farbtemperatur einstellbar ist) war schon mal für ausreichend Frontallicht gesorgt. Für die Ausleuchtung des Hintergrundes habe ich einfach auf die Arbeitsplatzleuchte ein dünnes Blatt weißes Papier geklebt, das ebenfalls als Diffusor dient. Die Arbeitsplatzleuchte ist glücklicherweise mit einer Leuchtstofflampe, mit fast Tageslichtfarbtemperatur als Leuchtmittel ausgestattet. So konnte ich das einstellbare Kopflicht gut an die Farbtemperatur der Hintergrundbeleuchtung anpassen.

Detailaufnahme für Stop-Motion Sequenz

Jetzt fehlt nur mehr die Kamera. Hier verwende ich meine alte Panasonic HDC-TM700 Videokamera, die im AVCHD Codec auf SD-Karte aufzeichnet. Als Stativ kommt ein kleines Manfrotto Videostativ zum Einsatz, das für die statischen Aufnahmen vollkommen ausreichend ist. Nach der Komplettierung des Aufbaus konnte mit den Bestückungsarbeiten der Platine begonnen werden. Hierzu habe ich ein einfaches Skript erstellt, das im Wesentlichen den chronologischen und logischen Aufbau der Schaltung beinhaltet. Ein paar Szenen in Stop-Motion Technik sollen wiederholte Tätigkeiten beschleunigt und aufgelockert darstellen. Das sind zum Beispiel die Leuchtdioden. Hier wird gezeigt, wie ein Stück eingelötet wird und die restlichen tauchen dann im Stoptrick Stil auf.  Nach dem fertig aufgebauten Würfel und den abgedrehten Szenen beginnen jetzt die Schneidearbeiten.

Nahaufnahme auf die LEDs

Heutzutage einfach und üblich im digitalen NLE – Schnitt (Nonlinear Editing), wird das Videomaterial vom Speichermedium der Kamera in ein Schnittprogramm auf die Arbeitsfestplatte (oder heute eher SSD) des Schnittrechners importiert. Die hier gängigen Programme sind Adobe Premiere und Davinci Resolve von Blackmagicdesign. Es gibt auch noch viele andere Schnittprogramme die für den schnellen, unkomplizierten Schnitt für Heim und Hobby geeignet sind, aber bei aufwendigeren Schnittarangements und Bildmanipulationen unbrauchbar sind. Dazu zählen Apple Imovie, der Moviemaker von Windows und leider auch Finalcut.

Videonachbearbeitung mit Resolve

Für den Schnitt dieses Videos habe ich mir einmal die freie Testversion von Davinci-Resolve angesehen. Und ich muss sagen, ich bin begeistert, wenn man nicht komplexe Titel und Effect-Templates benötigt, dann kann man in der Testversion schon ziemlich komplexe Projekte realisieren. Nach etwa 16 bis 2o Stunden war das ca.  fünf Minuten lange Filmchen fertig geschnitten. Jetzt fehlte noch eine Introsequenz, die mein Kollege als Computeranimation in Blender modelliert und animiert hat. Nach dem Rendern und Einbauen in das Würfelfilmchen, fehlte jetzt nur mehr der Ton. Hier wurde kein Originalton der Videoaufnahmen verwendet, sondern nur nachvertont. Beginnend mit Geräuschen zur Intro Animation und zu einigen Bewegungen im Film während des Lötens, wurde als weitere Tonspur (bzw. Spuren) die Hintergrundmusik und die Beats taktsynchron zu einigen Sequenzen (zum Bsp. die Stopmotions) angepasst. Um den Film zu komplettieren, fehlt noch die Stimme aus dem Off – also der Filmkommentar. Da meine Stimme und Sprechweise als Kommentarstimme für einen Film absolut ungeeignet ist und schrecklich klingt, haben wir unter den Kollegen einige Sprechproben durchgeführt. Und wir wurden auch fündig. Danke Fritz. Mit einem digitalen portablen Audiorecorder (früher wurde das mit dem Uher Reporter gemacht) mit geeignetem Mikrophon in einem geeigneten, echofreien, ruhigen Raum hat es geklappt, die ca. zwei Seiten Text einzusprechen. Mit dem freien Audiosoftware-Tool Audacity wurde das Audiomaterial nachbearbeitet und dann in das finale Projekt übernommen und alles eingepegelt. Endlich konnte das Projekt gerendert und als finale Datei gespeichert werden.