Immer wieder fasziniert mich das Thema Radioaktivität. Genauer gesagt ist es das Messen oder Detektieren dieser ionisierenden Strahlung, die durch den Zerfall und von Atomkernen unter Abgabe von Energie entsteht. Dabei unterscheidet man prinzipiell die aus der Bewegung der zerfallenden Teilchen (also Teilchenstrahlung) ausgesandte Energie (Alpha- und Beta- Teilchen) und der Strahlungsenergie, die als elektromagnetische Welle transportiert wird (Gammastrahlung und auch Röntgenstrahlung). Diese Strahlungsarten haben unterschiedliche Energiedichten und Reichweiten. Je nach Art sind sie mehr oder weniger einfach abzuschirmen. Alphastrahlung ist eine Teilchenstrahlung, die von Materie (Luft, Wasser) stark abgebremst wird und ein Blatt Papier gar nicht mehr durchdringt. Allerdings geben diese Teilchen auf ihrer sehr kurzen Distanz die Energie ab. Das ist besonders gefährlich, wenn diese Partikel eingeatmet werden, oder an den oberen Hautschichten strahlen. Gammastrahlung wiederum durchdringt wie eine Funkwelle Materie sehr leicht und lässt sich am wirkungsvollsten mit Blei abschirmen. Das auch diese Strahlungsart alles andere als ungefährlich ist, braucht man wohl nicht zu erwähnen.
Diese Strahlung kann man nicht sehen, riechen, schmecken oder sonst irgendwie direkt wahrnehmen, aber die Gefährlichkeit ist trotzdem vorhanden. Mit relativ einfachen Techniken kann man diese Zerfallsprozesse aber sichtbar, bzw. hörbar machen und zählen.
Das bewerkstelligt man schon seit langem mit einem sogenannten Zählrohr oder dank der modernen Technik auch mittels Halbleiter. Ein P-N-Übergang wird in Sperrrichtung betrieben und unter Ausschluss von Licht (also abgedunkelt) der ganz kleine Sperrstrom gemessen. Trifft nun energiereiche Strahlung auf diesen P-N-Übergang dann wird der Stromfluss kurzzeitig erhöht und kann detektiert werden.
Immer wenn sich die Möglichkeit ergibt, sehr günstig zu einem Detektor zu kommen, greife ich natürlich zu. So auch dieses Mal. Einen einfachen Bausatz, basierend auf der Detektion mittels Zählrohrs musste ich mir ansehen. Der Bausatz stammt aus Fernost und besteht aus einer Basisplatine, einem aufgesteckten Arduino Nano und einem ebenfalls aufgesteckten LC-Display.
Alle für die Detektion notwendigen Komponenten befinden sich auf dem Mainboard. Dazu zählt unter anderem die Hochspannungserzeugung für das Zählrohr, die mittels einfacher Boost-Konverterschaltung, angetrieben von einem 555er, realisiert wird. Um das Zählrohr auf dem Mainboard zu befestigen hat der Designer dieses Boards einfache Glasrohrsicherungshalter gewählt. Die passen zwar nicht ganz exakt, lassen sich aber soweit ausdehnen, dass sie das Zählrohr gut festhalten. Das Zählrohr ist übrigens ein J305. Es ist ca. 90mm lang und hat einen Durchmesser von knapp einem Zentimeter.
Das Zählrohr arbeitet bei einer Anodenspannung von 350V bis 480V. Nachstehend habe ich die Spezifikationen aus dem Datenblatt aufgelistet:
- Anodenspannung: 350 v bis 480 V
- Typ: J305 Geiger-Zählrohr
- Kathodenmaterial: Zinnoxid
- Wandungsdichte: 50 ± 10 cg/cm²
- Betriebstemperaturbereich: -40 °C bis 50 °C
- Durchmesser: 10 mm (±0,5 mm)
- Länge: 90 mm (±2 mm)
- Eigenhintergrundstrahlung: 0,2 Impulse/s
- Empfindlichkeit gegenüber γ-Strahlung: 0,1 MeV
- Stromaufnahme: 0,015 mA bis 0,02 mA
- Arbeitsspannung: 380 V bis 450 V
- γ-Strahlung: 20mR/h ~ 120mR/h
- β-Strahlung: 100 ~ 1800 Pulse/min.
- 100 ~ 1800 Pulse/min.
Die Signaldetektion sowie die Aufbereitung des Signals erfolgt auch auf dem Mainboard. Die erkannten Impulse werden über einen kleinen Piezolautsprecher wiedergegeben. Um sie auch zählen zu können, muss man nicht mit einer Stoppuhr vorm Lautsprecher sitzen und im Minutenabstand die Pieptöne zählen – nein – das übernimmt ein Microcontroller, der wie heute üblich, aus einem fertigen Board besteht. Hier hat der Designer einen Arduino Nano (oder auch Nanonachbau) gewählt. Auf dem wiederum läuft ein Programmchen, dass das Zählen der Impulse übernimmt und auch gleich schön auf einem zweizeiligen LC-Display anzeigt und idealerweise auch noch in µSievert/h umrechnet. Um die Pulse dem Arduino zu übergeben, wird der Pegel des Signals auf TTL-Level gebracht und an den Interrupt-Eingang des Arduino geschaltet. Das LC-Display benutzt den I2C Ausgang des Arduino. Die Leitungen dafür werden lediglich von der Buchsenleiste, in die der Arduino gesteckt wird, über das Mainboard zur Buchsenleiste für das Display geführt. Um das ganze System mit Spannung zu versorgen, werden direkt die 5V vom USB-Anschluss des Arduino verwendet. Optional kann man die 5V auch über eine Steckerleiste am Mainboard anschließen.
Ist alles zusammengebaut und die USB-Versorgung angesteckt, dann gibt es zuerst einmal eine kurze Wartezeit in der die Hochspannung aufgebaut wird. Hier hat sich der Programmierer eine Animation ausgedacht, die am Display „Boot…“ anzeigt.
Und dann geht es auch schon los. Der Geigerzähler ist betriebsbereit und beginnt zu zählen. Als Test habe ich lediglich eine alte Uhr, deren Zeiger mit Radiumfarbe bemalt sind, zur Verfügung. Hier ist zumindest eine deutliche Änderung der Anzahl der detektierten Zählimpulse festzustellen, wenn man die Uhr in die Nähe des Zählrohrs bringt.
Ich habe einen Geigerzähler Sinclair sx power supply ,mit einem Monitor 414 ich schätze 40 Jahre alt.Bräuchte dringend eine Gebrauchsanweisung