Archiv der Kategorie: Allgemeines & Neues

Hier poste ich alles, das keiner speziellen Kategorie entspricht

Keysite Oszilloskop stirbt im Standby – Netzteilreparatur

Ein interessantes Problem ist bei der Messtechnik in den Labors meines Arbeitsplatzes aufgetreten. Mit „Messtechnik“ bezeichne ich die Ausstattung eines Laborarbeitsplatzes, für die Grundlagenausbildung. Von den Laborarbeitsplätzen gibt es insgesamt neunzehn Einheiten, die mit je zwei Labornetzgeräten, zwei Tischmultimetern, einem Keysite Signalgenerator und einem Keysite (Agilent) Oszilloskop der Serie Infiniivision DSO-X 20xx ausgerüstet sind. Alle Geräte sind netzwerkfähig und sind über LAN mit dem zugehörigen Arbeitsplatzrechner verbunden. So kann mit Hilfe unterschiedlicher Software (Agilent VEE, Matlab, LabVIEW etc.) auf die Messgeräte zugegriffen werden. Die Geräte wurden vor ca. drei Jahren angeschafft und ersetzt die fast zwanzig Jahre alte Laborausstattung. 

Doch nun ist der Fall aufgetreten, dass bei einem Arbeitsplatz das DSO-X2012A Oszilloskop kein Lebenszeichen mehr von sich gab. Es kommt gelegentlich vor, dass bei Laborübungen oder beim freien Arbeiten in den Labors einmal ein Studierender den Not-Aus Schalter des Arbeitsplatzes betätigt und ihn so stromlos macht.  Doch das war nicht der Fall. Alle an dem Arbeitsplatz angeschlossenen Geräte funktionierten, mit Ausnahme des DSO. Auch am Ende des Kaltgerätesteckers war Spannung zu messen. Also konnte das Problem nur am Oszilloskop selber liegen. Die Rückwand ist schnell abgeschraubt, ein Schirmblech entfernt und das Netzteil liegt frei. Gleich bei der ersten optischen Begutachtung ist der große Siebelko mit nach oben gewölbter Kappe aufgefallen. Aber einmal schön der Reihe nach.

Netzteil des Infiniivision

An den AC Pins vom Netzeingang war die Netzspannung zu messen, jedoch an keinem der Ausgänge des Netzteils eine Gleichspannung. Egal ob der Powerschalter des Gerätes ein- oder ausgeschaltet war. Die Vermutung liegt nahe, dass das Netzteil defekt ist.

Eingangssicherung

Zunächst wurde das Netzteil ausgebaut und beginnend von der AC-Eingangsseite untersucht. Die Printsicherung im Bereich des Netzfilters ist gleich als erstes defektes Bauteil aufgefallen. Es handelt sich um eine träge 6.3A/250V Sicherung. Da eine ausgelöste Sicherung immer einen Grund hat, abzuschalten, wurde weitergesucht. Die Netzgleichrichter waren ok, jedoch hatte der 100uF / 420V Elektrolytkondensator, der als Gleichspannungsglättung der Primärseite eingesetzt ist, thermisch schon einiges abbekommen und war aufgebläht.

originaler Elko 100uF /420V /105°C

Auch seine Kapazität war nicht mehr im Nominalbereich. Aber auch das war nicht direkt der Grund für das Auslösen der Sicherung. Der war dann schnell gefunden. Ein Mosfet der als Ansteuerung des Transformators dient, war niederohmig. Genauer gesagt er hatte einen Kurzschluss zwischen allen Anschlüssen.

Mosfet STP12NM50

Das folgende Bild zeigt die Einbaupositionen der Bauteile. Diese wurden erneuert. Der Mosfet wurde durch einen Originaltyp ersetzt und der Netzelko gegen einen 100uF / 450V /105°C Typ getauscht. Der ist zwar von der Bauhöhe etwa fünf Millimeter höher, passt aber problemlos in das Netzteil.

Einbaulage des Kondensators und des Mosfet

Auf der Rückseite der Netzteilplatine waren zwei SMD Widerstände im Bereich des Gate-Anschlusses des Mosfet defekt. Es handelt sich dabei um einen SMD Widerstand der Baugröße 0805 mit 5,11 Ohm und einen SMD Widerstand der Baugröße 1206 mit 2,0 kOhm. Das untenstehende Bild zeigt auch hier wieder die Einbaulage.

Einbaulage der defekten SMD Widerstände

Nachdem alle erwähnten Bauteile erneuert waren, wurde ein erster Funktionstest durchgeführt. Dieser war jedoch ernüchternd, denn das Netzteil arbeitete noch nicht. Die Sicherung blieb intakt und die primärseitige Gleichspannung stand stabil. Doch das Gate des Mosfet wurde nicht angesteuert – leider. Denn jetzt kam der aufwendige Teil der Reparatur. Auf der Netzteilplatine befindet sich, stehend eingebaut, eine weitere Platine, auf der mehrere Controller IC´s verbaut sind. Verfolgt man die Gate-Leitung vom Mosfet, so endet sie an einem Pin dieser Ansteuerungsplatine. Also muss diese raus.

Controllerboard ausgebaut

Dazu musste zuerst das Kühlblech entfernt werden. Dann wurde es etwas mühsam, denn das Controllerboard ist nicht über eine Stiftleiste oder Steckverbindung mit der Hauptplatine verbunden, sondern die Kontaktpins sind gelayoutet und ausgefräst. Das bedeutet, man muss die Auslötarbeiten sehr behutsam in Angriff nehmen, um die Leiterbahnen an den Enden der gefrästen Pins nicht zu beschädigen.

Mainboard ohne Controllerplatine

 

UC3842B

Als der Ausbau erfolgreich abgeschlossen war, konnte das Controllerboard begutachtet werden. Und siehe da, die vom Gate des Mosfet geroutete Leitung endet an Pin 6 eines kleinen IC´s. Dabei handelt es sich um einen UC3842B VD1R2G. Bei diesem IC war das Gehäuse gesprengt. Neben dem Controller IC, war auch ein SOT23 PNP-Transistor (PMBT 2907A) gestorben und an allen Pins niederohmig.

Einbaulage der defekten Komponenten

Nach dem Erneuern der defekten Komponenten, wurde das Netzteil wieder zusammengebaut und ein Funktionstest durchgeführt. Das Oszilloskop startete wieder und das Netzteil verrichtete seinen Dienst.

defekte Bauteile
Ergebnis nach erfolgter Reparatur

Interessant wäre es jetzt herauszufinden, warum das Netzteil nach gerade einmal drei Jahren seinen Geist aufgibt. Zumal die Oszilloskope nicht im Dauerbetrieb laufen, sondern nur während der entsprechenden Lehrveranstaltungen eingeschaltet sind. Dabei ist folgendes aufgefallen: Das Oszilloskop ist permanent an die Stromversorgung angeschlossen. Der Power-Schalter des Oszilloskops schaltet aber nicht die AC-Versorgung aus, sondern nur im Sekundärbereich des Netzteils die Controlleransteuerung. Das bedeutet, das Netzteil arbeitet im ausgeschalteten Zustand quasi im Standby-Betrieb. Und dabei ist uns aufgefallen, dass bei allen ausgeschalteten Oszilloskopen im Standby eine Verlustleistung auftritt, die die Mosfets und vor allem den 100uF Elko stark erwärmt. Das würde den aufgebähten, ausgetrockneten Elko und den darauffolgenden Tod der Netzteile erklären.  Um das zu verifizieren wurde bei mehreren Geräten die seit Tagen nicht eingeschaltet waren, die Temperatur an den Komponenten gemessen.

 
Thermofühler an der Elkooberfläche

Hier konnte folgendes festgestellt werden. Sowohl an der Oberfläche des Kondensators als auch am Kühlblech der Mosfets waren im ausgeschalteten Zustand Temperaturen von 56°C bis knapp 60°C zu messen.  Sollte das so sein ??

Temperaturmessung am Elektrolytkondensator

 

Hier noch die benötigten Bauteile:

  • Widerstand 5R11 0,1W 0,1% Farnell Nr.: 1872688
  • Widerstand 2k0 0.66W Farnell Nr.: 721-9844
  • PNP Transistor SOT23, SMD Stempel 2F Type PMBT2907A, 215 Farnell Nr.: 1626500
  • PWM Controller IC, UC3842B VD1R2G / 500kHz Farnell Nr.:2845218
  • Kondensator 100uF / 105°C / 450V
  • Printsicherung T6.3A 250V

Jun2019: Bestellnummern aktualisiert

 

 

 

Der multimediale Auftritt des „Elektronischen Würfel“

Bausatz“Elektronischer Würfel“

Im Rahmen meiner beruflichen Tätigkeit bin ich immer wieder bei In-House- Veranstaltungen mit dabei und zusammen mit meinen Kollegen versuchen wir, in Hands-on Workshops, den Besuchern Elektronik näher zu bringen.  „Die Besucher“ sind meist Jugendliche aus Schulen, die sich auf der Suche nach ihrem beruflichen Werdegang und ihren zukünftigen Möglichkeiten, informieren wollen. Dazu bieten wir aus dem Elektronik-Bereich beispielsweise Lötübungen an, in denen die Jugendlichen einen kleinen Bausatz zusammenbauen und in Betrieb nehmen dürfen. Einer dieser Bausätze ist der Elektronische Würfel.

In dem Beitrag werde ich jetzt nicht über den Würfel selbst berichten, sondern über dessen multimediale Aufbereitung. Genauer gesagt, soll ein kleiner Einblick hinter die Kulissen entstehen, wie mit geringstem Hardwareaufwand ein kurzes Aufbauvideo des Bausatzes erstellt wurde.

Das Set sieht wie folgt aus: Auf dem Arbeitstisch wird ein weißer Papierhintergrund angebracht, der wie bei Photoshootings die Wand und den Boden bedeckt. Der Übergang von Wand zu Boden ist in einem großzügigen Bogen ausgelegt. Man kann sich das wie eine Quarter-Pipe vorstellen.  Das zu filmende Objekt wird dann im vorderen Bereich auf dem weißen Boden platziert. Vom Objekt zur Rückwand sollte ausreichend Platz sein, sodass es beim Ausleuchten dann keine Probleme mit Schatten auf der Rückwand gibt. In diesem Fall ist es einfach, da der Bausatz nicht sehr groß ist.

Anordnung des Hintergrundes

Die Ausleuchtung, der mitunter wichtigste Teil, für eine Bildaufnahme war hier etwas Bastelei. Normalerweise verwendet man zum Ausleuchten Videoleuchten mit einstellbarer Farbtemperatur bzw. Dauerlichtsoftboxen.  Für diese Aufnahmen hatte ich aber nur eine Kamerakopfleuchte und die „normale“ Arbeitsplatzbeleuchtung zur Verfügung. Aber mit einer Diffusorplatte für das Kopflicht (das zumindest in der Farbtemperatur einstellbar ist) war schon mal für ausreichend Frontallicht gesorgt. Für die Ausleuchtung des Hintergrundes habe ich einfach auf die Arbeitsplatzleuchte ein dünnes Blatt weißes Papier geklebt, das ebenfalls als Diffusor dient. Die Arbeitsplatzleuchte ist glücklicherweise mit einer Leuchtstofflampe, mit fast Tageslichtfarbtemperatur als Leuchtmittel ausgestattet. So konnte ich das einstellbare Kopflicht gut an die Farbtemperatur der Hintergrundbeleuchtung anpassen.

Detailaufnahme für Stop-Motion Sequenz

Jetzt fehlt nur mehr die Kamera. Hier verwende ich meine alte Panasonic HDC-TM700 Videokamera, die im AVCHD Codec auf SD-Karte aufzeichnet. Als Stativ kommt ein kleines Manfrotto Videostativ zum Einsatz, das für die statischen Aufnahmen vollkommen ausreichend ist. Nach der Komplettierung des Aufbaus konnte mit den Bestückungsarbeiten der Platine begonnen werden. Hierzu habe ich ein einfaches Skript erstellt, das im Wesentlichen den chronologischen und logischen Aufbau der Schaltung beinhaltet. Ein paar Szenen in Stop-Motion Technik sollen wiederholte Tätigkeiten beschleunigt und aufgelockert darstellen. Das sind zum Beispiel die Leuchtdioden. Hier wird gezeigt, wie ein Stück eingelötet wird und die restlichen tauchen dann im Stoptrick Stil auf.  Nach dem fertig aufgebauten Würfel und den abgedrehten Szenen beginnen jetzt die Schneidearbeiten.

Nahaufnahme auf die LEDs

Heutzutage einfach und üblich im digitalen NLE – Schnitt (Nonlinear Editing), wird das Videomaterial vom Speichermedium der Kamera in ein Schnittprogramm auf die Arbeitsfestplatte (oder heute eher SSD) des Schnittrechners importiert. Die hier gängigen Programme sind Adobe Premiere und Davinci Resolve von Blackmagicdesign. Es gibt auch noch viele andere Schnittprogramme die für den schnellen, unkomplizierten Schnitt für Heim und Hobby geeignet sind, aber bei aufwendigeren Schnittarangements und Bildmanipulationen unbrauchbar sind. Dazu zählen Apple Imovie, der Moviemaker von Windows und leider auch Finalcut.

Videonachbearbeitung mit Resolve

Für den Schnitt dieses Videos habe ich mir einmal die freie Testversion von Davinci-Resolve angesehen. Und ich muss sagen, ich bin begeistert, wenn man nicht komplexe Titel und Effect-Templates benötigt, dann kann man in der Testversion schon ziemlich komplexe Projekte realisieren. Nach etwa 16 bis 2o Stunden war das ca.  fünf Minuten lange Filmchen fertig geschnitten. Jetzt fehlte noch eine Introsequenz, die mein Kollege als Computeranimation in Blender modelliert und animiert hat. Nach dem Rendern und Einbauen in das Würfelfilmchen, fehlte jetzt nur mehr der Ton. Hier wurde kein Originalton der Videoaufnahmen verwendet, sondern nur nachvertont. Beginnend mit Geräuschen zur Intro Animation und zu einigen Bewegungen im Film während des Lötens, wurde als weitere Tonspur (bzw. Spuren) die Hintergrundmusik und die Beats taktsynchron zu einigen Sequenzen (zum Bsp. die Stopmotions) angepasst. Um den Film zu komplettieren, fehlt noch die Stimme aus dem Off – also der Filmkommentar. Da meine Stimme und Sprechweise als Kommentarstimme für einen Film absolut ungeeignet ist und schrecklich klingt, haben wir unter den Kollegen einige Sprechproben durchgeführt. Und wir wurden auch fündig. Danke Fritz. Mit einem digitalen portablen Audiorecorder (früher wurde das mit dem Uher Reporter gemacht) mit geeignetem Mikrophon in einem geeigneten, echofreien, ruhigen Raum hat es geklappt, die ca. zwei Seiten Text einzusprechen. Mit dem freien Audiosoftware-Tool Audacity wurde das Audiomaterial nachbearbeitet und dann in das finale Projekt übernommen und alles eingepegelt. Endlich konnte das Projekt gerendert und als finale Datei gespeichert werden.

 

 

Homematic CCU – Tuning

Die CCUs der Homematic kommunizieren mit ihren drahtlos angebundenen Sensoren und Aktoren über das 868MHz ISM Band. Hier ist die Sendeleistung und die Senderate klar definiert. So kommt es durchaus häufiger vor, dass bei vielen Geräten, die unterschiedlich weit von der Zentrale entfernt sind, auch Kommunikationsfehler auftreten. Einige diese Fehler sind dabei auf die Feldstärke an der CCU- Antenne zurückzuführen. Die Wellenlänge in Luft beträgt bei 868MHz in etwa 0,345m. Die Antenne in der CCU und in den Aktoren ist auf Lambda/4 ausgelegt. Das sind ca. 8,6cm, die als Unipol im Gehäuse liegen. Diese Antenne ist einfach und funktionell. Allerdings kann der Antennengewinn und somit die Reichweite der Homematic durch einbauen einer anderen Antenne einfach gesteigert werden.

CCU2 mit externe 868MHz Antenne

Es gibt zu diesem Thema im Netz schon einige Lösungen und Umbauten. Hier beschreibe ich meinen Umbau auf eine externe Antenne. Die Antenne soll extern befestigt werden. Eine SMA-Buchse ermöglicht das Anschließen unterschiedlicher Antennen. In diesem Beispiel habe ich mich für eine 868 MHz Helix Antenne mit Knickgelenk entschieden. Die SMA Buchse ist eine fertig konfektionierte MH113 50Ohm Buchse mit 1,13mm Koaxialleitung und MHF1 Stecker.

SMA Buchse mit Koaxkabel

Der MHF1 Stecker wird nicht benötigt und kann von der Koaxialleitung „abgeschnitten“ werden. Bei diesem, nun offenen, Kabelende muss der Innenleiter und Schirm zum Anlöten vorbereitet werden.

Offenes Ende des Koaxialkabels

Jetzt ist die CCU2 an der Reihe. Der Deckel ist schnell entfernt und die Platine freigelegt. Unten links im Bild ist das RF-Modul der Homematic mit dem Antennendraht zu erkennen. Zuerst wird die originale Antenne entfernt und ein wenig vom Lötstoplack der Masseplane entfernt. An dieser Stelle wird dann der Schirm des Koaxialkabels festgelötet.

Geöffnete CCU2

Das vorbereitete Stückchen Koaxialkabel mit dem SMA Stecker wird nun am RF-Modul angelötet. Hierbei kommt der Innenleiter an das RF-Pad mit dem vorher die Antenne verbunden war und das Schirmgeflecht an die freigekratzte Masseplane.

RF Modul mit entfernter Antenne
Koaxkabel am RF – Modul festgelötet

Die elektrische Verbindung ist somit hergestellt. Eine kleine Unstimmigkeit gibt es hier allerdings noch, bzw. habe ich mich hier noch nicht schlau gemacht: Die originale Antenne war ein einfacher Draht. Das würde bedeuten, es gibt eine Impedanz Anpassung am Ende des RF-Modul LNAs und des High-Z Drahtes. Die Koaxialleitung mit dem SMA Stecker hat allerding ebenfalls eine charakteristische Impedanz von 50 Ohm. Das würde bedeuten, es gäbe (oder gibt) hier eine Fehlanpassung. Das wiederum würde wieder Reflexionen an der Leitung und somit wiederum Leistungseinbußen hervorrufen. Im Gesamtsystem wird aber trotz vermutlicher Fehlanpassung eine Reichweitensteigerung erreicht. (Die wiederum könnte man aber mit einer korrekten Netzanpassung nochmals steigern… dazu müsste man sich das RF-Modul genauer ansehen) 

Montageloch im CCU2 – Deckel

Jetzt muss nur noch ein geeignetes Loch für den SMA – Stecker in den Gehäusedeckel gebohrt werden. Dann kann man den SMA Stecker festschrauben. Nach dem Zusammenbau der CCU ist nun nur mehr die Antenne aufzuschrauben und der Umbau ist erledigt.

868 MHZ Helixantenne mit 50Ohm SMA Stecker

Einen Funktionstest, bzw. einen Nachweis der Steigerung der Empfangs- Sendeleistung kann man überprüfen, indem man die RSSI-Pegel der angelernten Sensoren und Aktoren vor und nach dem Umbau vergleicht. Hier hilft „devconfig“, ein kleines Tool in der Homematic Software, das mittels SSH freigeschaltet werden kann:

 
echo CP_DEVCONFIG=1 >> /etc/config/tweaks

 

Solar – Radiometer

Der/das Radiometer – auch Lichtmühle genannt – ist ein lehrreiches, physikalisches Demonstrationsobjekt, das schon vor ca. 100 Jahren von dem englischen Physiker Crookes erfunden wurde. Dieses kleine pyhsikalisch-technische Anordnung zeigt in anschaulicher Weise, wie Licht in mechanische Energie umgewandelt wird.

 

Die Funktionsweise des Solar-Radiometer:

Flügelrad im inneren der teilevakuierten Glaskugel

Trifft warmes Licht, also Sonnenlicht, Licht von Glühbirnen oder Punktstrahlern, eben Licht in dessen Spektrum auch der infrarote Anteil vofhanden ist (aber kein kaltes Licht von Leuchtstofflampen) auf das, auf einer Nadel ruhende Flügelkreuz, so dreht sich dieses je nach Stärke der Lichtquelle. In einem besonderen Verfahren wird in der Glaskugel ein Teilvakuum erzeugt, so dass der Luftwiderstand nicht stärker als die, durch die Lichtenergie erzeugte Drehkraft des Flügelrades ist. Die geschwärzten Flächen des Flügelkreuzes nehmen mehr Lichtenergie auf, als die hellen Flächen. Durch die Erwärmung der Luftmoleküle entsteht an den dunklen Flächen ein wesentlich höherer Druck als an den hellen Flächen. Dadurch wird die ständige Rotation des Flügelkreuzes bewirkt. (Brownsche Molekular-Theorie). Es sollen je nach Lichtstärke bis zu 3000 Umdrehungen pro Minute erreicht werden. (Quelle: Hersteller des Radiometer)

 

USB – Stick defekt?

 

Immer wieder passiert es mir, dass ein USB – Speicherstick seine Funktion verliert und plötzlich nicht mehr erkannt wird. Oft ist der Stick noch als Laufwerk im System angemeldet, aber es fehlt der Datenträger, oder auch das System meldet, dass der Stick nicht formatiert ist. Und das obwohl er gerade eben noch, voll mit wichtigen Daten, in einem anderen Rechner funktioniert hat. 🙂  (Hier würde jetzt die Geschichte mit den Backups oder Sicherungskopien herpassen… ). All diese Probleme sind meist auf Bedienungsfehler oder mechanische Probleme zurückzuführen. Ein Bedienungsfehler kann beispielsweise sein, dass der Stick gezogen wird, während noch ein Schreibvorgang stattfindet. Der Stick wird dann während eines Prozesses stromlos gemacht. Und je nach dem, ob der Controller oder der Flash-Speicher damit umgehen kann, überlebt der Stick oder eben nicht. Oft sind auch mechanische Gebrechen die Ursache für Ausfälle. So kann es sein, dass die Lötstellen zwischen dem Connector und der Platine brechen, oder auch die Anschlussbeinchen der Quarze oder Oszillatoren  Kontaktprobleme bekommen.

In diesem Fall habe ich einen Miniaturstick von extrememory bekommen, der seine gespeicherten Daten nicht mehr hergeben will. Er wird in der Systemverwaltung zwar angezeigt, aber will man darauf zugreifen, kommt die Meldung „kein Datenträger gefunden“. Der Versuch über diskpart aus der Commandline zu formatieren oder zu partitionieren klappte nicht. Auch diverse Tools wie „SDFormatter“ oder „USBstick_Formattool“ schlugen fehl. Auch mit Linux oder auf MAC-Systemen war kein Erfolg zu erzielen. Also ein Stick für die Tonne… Aber ich dachte mir, auch wenn der Stick in seiner kleinen Bauform eher nicht auf einen mechanischen defekt schliessen lässt – warum nicht trotzdem mal reinschauen 🙂 Und bei 16GB gebe ich auch nicht so schnell auf.

Also versuchte ich das Gehäuse vorsichtig zu öffnen, indem ich zuerst das Metallgehäuse des USB-Steckers entferne.

Das klappt ganz gut. Nachdem ich das zum Vorschein gekommende Platinchen mit seinen Leiterbahnen näher betrachten wollte, tauchte da plötzlich etwas Bekanntes auf.

Das sieht doch aus wie eine SD-Karte. Genauer gesagt, wie eine MicroSD-Karte.

Genau so war es auch. Der USB-Stick ist nichts anderes als ein MicroSD-Card Reader, in den eine solche Karte eingebaut ist. Mit einer Pinzette ließ sich die SD-Card heraushebeln.

Scheinbar ist auch hier wieder das Problem mit den Kontakten, bzw. Kontaktfedern zwischen Card und Cardreader die Ursache für das Problem, denn die SD-Card funktionierte in einem anderen Cardreader einwandfrei und alle Daten waren vorhanden. Es zahlt sich also aus, vor der Mülltonne ein paar Minuten zu investieren und die Innereien des Gerätes zu begutachten.

Frohe Weihnachten 2017

Frohe Weihnachten an die Besucher des Blogs!

Das dritte Jahr „Technik- und Retroblog“ ist jetzt um und ich habe es geschafft, mindestens einen Beitrag im Monat zu erstellen. Es gibt auch noch reichlich Material aus alten Zeiten, worüber ich hier wieder posten möchte. Die Zugriffsstatistik auf die Blogseite zeigt mir auch, dass sich auch einige Besucher hierher verirren…

Ich bin auch immer wieder auf der Suche nach kleinen, kuriosen Geräten und Spielzeugen aus den 70er, 80er Jahren. Doch Vieles ist nicht mehr zu bekommen und komplett verschwunden. Es wird leider immer schwieriger Dinge aus seiner Jugendzeit zu finden. Aber wir werden sehen, was das neue Jahr bringen wird 🙂

In diesem Sinn:

Fröhliche Weihnachten und schöne Feiertage!

 

Social Media – muss wohl sein …

Jeder spricht heute von Social Media und dank Smartphone und mobilem Internet kann auch jeder daran teilnehmen. In Wikipedia ist unter „Social Media“ folgende Definition zu finden:

Social Media (auch soziale Medien) sind digitale Medien und Technologien, die es Nutzern ermöglichen, sich untereinander auszutauschen und mediale Inhalte einzeln oder in Gemeinschaft zu erstellen. Der Begriff „Social Media“ wird aber auch für die Beschreibung einer neuen Erwartungshaltung an die Kommunikation genutzt und zur Abgrenzung von dem Begriff soziale Medien im Singular verwendet, da es sich um mehr handelt als um einzelne Medienkanäle.

Soziale Interaktionen in sozialen Medien gewinnen zunehmend an Bedeutung und wandeln mediale Monologe(one to many).

Zudem sollen sie die unbehinderte Verbreitung von Wissen und Informationen unterstützen und den Benutzer von einem Konsumenten zu einem Produzenten entwickeln. Demnach besteht weniger oder kein Gefälle zwischen Sender und Rezipienten (Sender-Empfänger-Modell). Als Kommunikationsmittel werden dabei Text, Bild, Audio oder Video verwendet. Das gemeinsame Erstellen, Bearbeiten und Verteilen von Inhalt, unterstützt von interaktiven Anwendungen, betont auch der Begriff Web 2.0.

quelle: wikipedia

Na dann… wird´s ja Zeit, da auch mit zu machen 🙂 Googles youtube und google+ verwende ich ohnehin, um videos zu den Blogbeiträgen zu verlinken. Und mit der Platform Instagram lässt sich ein kurzes Intro zum Blog verlinken. Das sollte dann mit den gewohnten Buttons zu realisieren sein …

Hameg Oszilloskop HM1508

Ein besonderes Dankeschön möchte ich in diesem Beitrag an die Firma Rohde und Schwarz Österreich GmbH für die kostenlose Überlassung eines Hameg Mixed Signal CombiScope HM1508 aussprechen. Vielen Dank für diese Spende.

Das Hameg HM1508 ist ein Vier-Kanal Oszilloskop mit zwei analogen Kanälen und zwei Logic-Eingängen. Die Samplerate beträgt 1GS/s bei einer Speichertiefe von 106 Punkten pro Kanal. Die analoge Bandbreite beträgt 150MHz. Das Gerät ist noch mit einer klassischen Monochrom-Anzeigeröhre ausgestattet und bietet etliche Funktionen der modernen Speicheroszilloskope.

So sind beispielsweise Messungen am Signal im Amplituden- und Zeitbereich per Cursor und auch automatisch möglich.

Die Datenpunkte werden per Interpolation (sinx/x, pulse, bzw. linear) verbunden. Die Dataaquisition kann in den Modi: single, average, envelope, roll und refresh erfolgen. Die vertikale Darstellung ist in den Bereichen von 1mV bis 20V pro Division einstellbar. Weiters bietet das Hameg einige Math-Funktionen sowie die Moglichkeit, die erfassten Daten zu speichern und exportieren.

Eine USB-Schnittstelle, sowie eine RS232 DB9 Buchse dienen als Schnittstelle zur Aussenwelt.

Ebenso im Lieferumfang enthalten: Die Signalprobes (eine pro Channel)

Die Abmessungen betragen: 285 x 125 x 380 mm 
Gewicht: 5,6kg
Leistungsaufnahme: 35W bei 240VAC und 50Hz

 

YouTube, und interessante Favoriten aus dem Bereich Technik

Dieses Mal berichte ich nicht über ein Projekt oder eine „Altgeräte-Vorstellung“, sondern möchte einige interessante Nutzer bzw. deren Beiträge aus dem Portal YouTube vorstellen. Es sind dies Beiträge aus dem Bereich Computer, Technik und Wissenschaft, die ich persönlich sehr gerne ansehe.

Als allererstes ist hier die Legende der modernen Computergeschichte zu erwähnen, die mich schon seit Jugendzeiten in den Bann gezogen hat. Der ComputerClub aus WDR Zeiten mit Wolfgang Rudolph und Wolfgang Back. Die beiden Moderatoren haben ab Anfang der 80iger bis 2003 beim Westdeutschen Rundfunk die Sendung Computerclub moderiert. In den Themen beschäftigen sich die beiden Herren allgemein mit Computern und Peripherie, neuen Entwicklungen im Bereich Elektronik und stellen hier alle möglichen Dinge vor.  Auf YouTube sind  viele Sendungsmitschnitte unter anderem vom user janbras archiviert.

Am 22. Februar 2003 wurde die letzte Sendung beim WDR ausgestrahlt.

Doch die beiden Protagonisten haben den Computerclub nicht aufgegeben und ihn am 24.Juli 2007 über einen deutschen Privatsender (NRW-TV) wieder auferstehen lassen.

Der Privatsender NRW-TV musste jedoch 2016 seinen Betrieb einstellen und so wurde die Sendung Nr.186 als letzte in den Studios des NRW aufgezeichnet.

Doch Wolfgang Rudolph hat es geschafft durch Spendenaufrufe, ein eigenes Studio auf die Beine zu stellen und produziert den CC2 nun in eigener Regie aus seinem privaten Studio.

Im Hintergrund hat sich auch einiges geändert, das die Zuschauer und Freaks ein wenig verwirrte. Parallel zu den Sendungen existierte die Seite cczwei.de die von beiden Herren befüllt wurde. Nach dem 13.12.2016 tauchte plötzlich eine neue Seite auf. Die neue Domain cc2.tv wurde erstellt. Die betreibt nun Herr Rudolph alleine. Die domain cczwei.de wird weiterhin von Herrn Back betrieben. Ihm zur Seite steht Herr Heinz Schmitz der nun mit Herrn Back YouTube Sendungen produziert. Anscheinend gab es zwischen den Herren ausreichend Gründe, sich von der langjährigen Gemeinschaftsarbeit zu trennen. Eine offizielle Erklärung dazu gab es nie.

 

Aus dem Bereich Computer berichten die Jungs von VirtualDimension. Sie nennen Ihren Kanal VD Hurrican und produzieren die Formate: Virtuelle Welten, Back in Time, Retroplay und Vor Ort.  Die Beiträge sind absolut professionell gestaltet und behandeln hauptsächlich das Thema Homecomputer. Mit viel Hintergrundinformation werden hier die alten 8 und 16 Bit’er vorgestellt. Gameplays sowie Messeberichte und Beitrage von Community-veranstaltungen gehören ebenfalls zu ihrem Repoertoire. Als Beispiel hier ein Link zum Unboxing eines Amiga500 und dessen Geschichte. Anlässlich ihres 1000ten Abonnenten auf YouTube haben sie ein 1000-Abonnenten-Special mit einer Studiotour veröffentlicht.

Vom Australischen Kontinent aus bloggt Dave Jones, ebenfalls ein eingefleischter Techniker. Auf seinem YouTube Kanal EEVblog, Stellt er ebenso elektronische Geräte vor, erklärt deren Aufbau und Funktionsweise. Eine besondere Rubrik in seinem Kanal sind die sogenannten Mailbags. Hier bekommt Dave Pakete von Leuten aus der Community zugesandt die er vor laufender Kamera öffnet und deren Inhalt vorstellt. Das können alte Computer und Platinen, oder auch neue Entwicklungen und Prototypen von Startup´s sein, die hier präsentiert werden.

 

Ein etwas anderer Kanal ist der eines Engländers. Er nennt sich Photonicinduction und zeigt Experimente mit hohen Leistungen. Alle möglichen Geräte, wie Staubsauger, Heizlampen, Waschmaschinen, Lautsprecher, etc. werden bis an die Grenze ihrer maximalen Leistungsdaten betrieben – und noch weit darüber hinaus. Das Ende des Gerätes durch Zerstörung ist hierbei das Ziel.

 

 

Raspberry Pi – mechanische Beanspruchung extrem

Der Raspberry Pi ist als universell einsetzbarer Einplatinencomputer in vielen Hobby- und Heimanwendungen zu finden. Ob als Webserver, TV- oder Radio-Streamingserver, Spielekonsolenemulator oder Steuerungen im Bereich Robotik und Automation, der Raspberry PI kann diese Aufgaben erfüllen. Auch als mobiler Datenlogger lässt er sich aufgrund der kompakten Bauform und geringen Stromaufnahme ideal nutzen. In einem früheren Blogbeitrag habe ich ein Beispiel mit Wetterdatensensoren, angeschlossen an einen batterieversorgten Raspberry Pi, aufgebaut. Der „Logger“ zeichnete die Daten der Sensoren auf einer Speicherkarte auf. So ein Logging-System lässt sich auch wunderbar in ferngesteuerte  Fahr- oder Flugmodelle einbauen. 

Was jedoch passiert wenn so ein Flug- oder Fahrmodell von seiner Momentangeschwindigkeit in einem sehr kurzen Moment auf Geschwindigkeit Null verzögert wird, kann man sich vorstellen. Wie jedoch das Logging-System darin dann aussieht, vielleicht nicht. Aber ich kann hier mit Bildmaterial helfen.

Hier war einst die CPU

Die USB-Buchsen sind noch vorhanden. Der LAN-Anschluß fehlt.

Die Zweiteilung des Raspberry Boards haben die ihn überholenden, schwereren Komponenten (Batterien), die hinter ihm angeordnet waren verursacht. 

Selbst der Mini-USB Stick verformte sich so stark, dass der Speicherchip in zwei Teile zerbrach. Ein Auslesen der Daten war somit auch nicht mehr möglich.