Schlagwort-Archive: VFD

VFD-Uhr mit Datum, Wochentag und Sound

Einen neuen Bausatz zum Thema Vakuum Floureszenz Display habe ich von Günter (gr-pojects) erhalten. Vielen Dank!

Es ist eine Uhr mit Vakuum-Floureszenz-Anzeigeröhren der Typen IV-11 für die Stunden, Minuten und Sekundenanzeige und einer IV-18 Röhre für die Datumsanzeige, sowie IV-3 zur Darstellung des Wochentages. Die Uhr besteht aus einem Mainboard mit Spannungsversorgung, CPU, MP3-Modul sowie den Treiberbausteinen für die Röhren. Die Uhrzeit wird über einen extern angeschlossenen DCF-77 Empfänger eingestellt und synchronisiert. Später wird das Board noch mit einer Realtimeclock-Schaltung erweitert.  Die Energieversorgung für die gesamte Schaltung kommt von einem kleinen Steckernetzteil mit 12V/1.2A. Die gesamte Stromaufnahme beträgt ca. 450mA. Als besonderes Feature besitzt die Uhr ein kleines MP3-Soundmodul mit MicroSD-Kartenslot. Dieses erhält vom Microcontroller über die serielle Schnittstelle zu jeder viertel-Stunde ein entsprechendes Commando, ein MP3 File abzuspielen. So wird die viertel Stunde mit einem „Gongschlag“, die halbe Stunde mit zwei und die dreiviertel Stunde mit drei „Gongschlägen“ signalisiert. Zur vollen Stunde wird die entsprechende Uhrzeit angesagt.

Die gesamte Schaltung ist in ein Alu-Acryl Gehäuse eingebaut. Alle Formteile sind gefräst und werden  verschraubt. Ein Video vom Aufbau und der Funktion ist unten zu sehen:

Der Sony EV-S9000 und wenn es nach „Fisch“ riecht

Aus den Zeiten der analogen Videoaufzeichnung auf Magnetband stammt der SONY EV-S9000E Recorder. Es handelt sich dabei um einen „Pro-Consumer“ Recorder der etwa Anfang der 90iger Jahre auf den Markt kam. Er besitzt ein 8mm Videobandlaufwerk, das sowohl die Formate Video8, als auch HI8 (vergleichbar mit S-VHS) wiedergeben und aufzeichnen kann. Zu seinen Besonderheiten gehört wohl das elektrisch ausfahrbare Bedienpanel, auf dem sich unter anderem auch ein JogShuttle-Drehrad und eine integrierte Schnittsteuerung befindet. Mit dem Recorder war es möglich, über die Schnittstellen „LANC“ bzw. „Control S“ einen weiteren Recorder zu steuern und ihn als Zuspieler zu verwenden.  Die Besonderheit hierbei war, dass beide Videosignale (sowohl vom Player als auch vom Recorder) auf dem Monitor in Fenstern angezeigt wurde. So konnten alle Schnitte des Quellbandes per Timecode vordefiniert werden. Per Knopfdruck wurden alle Schnitte dann automatisch abgearbeitet. Die Maschinen arbeiteten und spulten die Bänder und man konnte zusehen, wie das Masterband entstand.

Mittlerweile arbeitet niemand mehr mit linearem Schnitt und zeichnet auf Analogbänder auf. Die Technik wurde von den Digitalbändern (D8, DVHS, DV, DVCam…) abgelöst. Auch die Bänder wurden mittlerweile abgelöst und durch Speicherkarten ersetzt. Der Fernsehstandard wurde bekanntlich ja neu definiert (HD, 4K UHD etc).

Aber: Es gibt noch Unmengen an alten Analogbändern in schlechter SD-Auflösung, die viele viele Jugenderinnerungen beinhalten. Und diese sollen ja auch in die Zukunft gerettet werden. Darum lohnt es sich, die alten Bandbaschinen am Leben zu halten, um die Erinnerungen digitalisieren und in die neuen Formate konvertieren zu können. (mp4…)

Genau eine solche Digitalisierung musste ich schnell mit einem alten Videoband durchführen. Doch falsch gedacht. Der EV-S9000 wollte nach dem Einstöpseln kein Lebenszeichen mehr von sich geben. Also: Deckel runter, Servicemanual herausgesucht und die Betriebsspannungen am Ausgang des Netzteils überprüft. Hier war schon das erste Problem zu finden. Es stimmte fast keine der Ausgangsspannungen mehr. Das Netzteil benötigte also ein Service. Wie immer bei alten Geräten werden zuserst die Elektrolytkondensatoren geprüft. Auch hier war wie erwartet, keine einzige Kapazität mehr dem Aufdruck entsprechend. Abweichungen bis zu -90% waren hier messbar. Daraufhin habe ich ausnahmslos alle Elkos erneuert. (den kleinen 56µF Elko habe ich mangels Verfügbarkeit im Lager gegen eine Parallelschaltung eines 47µF und eines 10µF ersetzt). Nach dem Reinigen der Platine und Wiedereinbau in den Metallkäfig folgte der erste Test. Und siehe da: Der Recorder startet wieder. Das Panel wurde ausgefahren aber ausser den Leds an den Tastern, keine Anzeige im Floureszenzdisplay. Ich erinnerte mich, dass das Display beim letzten Mal auch schon nicht funktionierte, ich aber zu faul war, mich darum zu kümmern. Nach längerem Betrieb des Recorders war auch der Geruch von faulem „Fisch“ wahrzunehmen, der langsam den Raum füllte. Das roch wieder nach Elkos, die ihr ganzes Inneres offenbarten. Also startete ich einen Riechangriff und versuchte die Quelle des Übels zu erriechen. Ich wurde schnell fündig und machte das Bediepanel als Verursacher aus. Ein kurzer Blick in den Schaltplan verriet mir, dass auf dem Panelboard ein Schaltwandler untergrabracht war, der sowohl die Heizspannung, als auch die hohe Spannung zwischen Anode und Kathode erzeugt. Also wurde die Platine ausgebaut um sie zu untersuchen.

Im Bild unten ist die VFD (VakuumFloureszenzDisplay)-Anzeige zu sehen und links oben die kleine Metallbox unter der sich die DC/DC Converterschaltung verbirgt.

Man kann schon erkennen, dass hier etwas nicht ganz in Ordnung sein kann. Der dunkle Fleck rechts neben der Box sollte nicht sein.  Die Schirmbox ist schnell entfernt und der Blick darunter wird frei:

Auf der Bauteilseite ist schnell zu erkennen, dass hier ein Elko undicht ist und der ausgelaufene Elektrolyt die Leiterbahnen beschädigt hat.

Auch auf der Lötseite sieht es nicht besser aus. Darum habe ich zuerst einmal alle Elkos entfernt, um dann mit der Reinigung und Restauration der verätzten Leiterbahnen zu beginnen.

Nach dem Wiedereinbau der Elkos werden beidseitig wieder die Schirmbleche befestigt. Auch alle weiteren, auf dem Board befindlichen Elektrolytkondensatoren, werden geprüft und ggf. erneuert. Das folgende Bild zeigt die Ausbeute an defekten Teilen:

Jetzt kann das Panel wieder zusammengebaut und einem Funktionstest unterzogen werden.

Bingo! Gleich nach dem Einschalten wird das Timecodedisplay und die Audiopegelanzeige wieder sichtbar. Die VFD-Anzeige lebt wieder.

 

VFD – Uhrenbausatz

dsc_2772

Uhren und Zeitmessgeräte, auch die nicht-mechanischen, gehören zu meinen Interessengebieten. Vor allem, wenn die Uhrzeit  mit optisch schönen Anzeigen dargestellt wird, bin ich Feuer und Flamme. Dazu zählen Nixie-Anzeigeröhren und auch die VFD-Röhren. Über letztere handelt dieser Blogeintrag. Hier hat Herr Günter Rother (www.grother.de) einen sehr schönen Bausatz zusammengestellt, der schnell und einfach zusammen zu setzen ist. Es sind alle zum Aufbau benötigten Teile enthalten und man kann gleich loslegen.

dsc_2766

Auf einer zweiseitigen, gelayouteten und mit Lötstoplack versehenen Platine mit den Abmessungen 100×50 mm findet die Uhrenschaltung Platz, bei der als Anzeige für jede Ziffer je eine 7-Segment VFD-Röhre verwendet wird. VFD bedeutet hier Vakuum-Fluoreszenz-Display. Die Funktionsweise ist hier nicht wie bei Nixieröhren eine Glimmentladung, sondern wie bei Elektronenröhren, eine, von einer direktbeheizten Kathode emittierte Elektronenwolke, die auf einer Leuchtschicht – Anode (Phosphor) auftrifft.dsc_2773 Die Spannung zwischen Kathode und Anode liegt hier üblicherweise zwischen 20V und 50V. Mit einem Steuergitter vor den Segmenten können die Elektronen gezielt gebremst werden. Somit ist eine Ansteuerung einzelner Segmente möglich.

Treiberbaustein für die IV-3 VFD-Röhre ist ein LB1240 Display Tube Driver IC, der acht voneinander unabhängige Darlingtonstufen beinhaltet. Jeder Ausgang ist in der Lage 30mA bei maximal 55V zu treiben. Die Eingänge des LB1240 werden über einen Atmel AT89C2051-12PU angesteuert und mittels vier Transistoren wird jede Röhre per Multiplexing geschaltet. Getaktet wird der Atmel mit 11.0592Mhz. Ein DS18B20 Temperatursensor ist ebenfalls in den Bausatz integriert, um auch die Temperatur anzeigen zu können. Der DS18B20 ist ein 1-Draht Digital-Temperatursensor, einstellbar  in 9 bis 12 Bit-Auflösung   an 5V Spannungsversorgung und mit einer Ansprechzeit von 94ms bis 750ms, je nach Auflösung. Der Mikrocontroller ist bereits mit der Firmware für die Uhr geflashed und direkt einsatzbereit. Die IC´s sind gesockelt, 1/25W Kohleschichtwiderstände auf Band und sogar alle Schrauben, Abstandhalter und vorgefertigte Acrylglasplatten für ein finales Gehäuse sind vorhanden.

Die gesamte Schaltung wird mit einem 50Hz Steckernetzteil mit konventionellem Eisenkerntransformator versorgt. Die Spannungen an Board werden mit einem 7905 Linearregler für die 5V und einem fertigen DC/DC Convertermodul (Step-UP-Wandler) für die ca.30V Anodenspannung erzeugt. Bedient wird die Uhr über zwei Mikrotaster, mit denen Stunden und Minuten eingestellt werden können.

Ein kurzes Video über den Zusammenbau und die fertige Uhr kann hier angesehen werden: