Archiv der Kategorie: Retro – Computer

Für viele noch gut in Erinnerung: Die alten 8-Bit und 16 Bit Rechner der 80iger und 90iger Jahre

Ein Nachbauprojekt für die Vectrex

Loading

Es ist wieder einige Zeit vergangen, dass ich es schaffe, in den späteren Abendstunden Zeit und Energie zu finden, hier im Blog über eines meiner kleinen Projektchen zu schreiben. Ich habe mir in den letzten Jahren angewöhnt, bei Autofahrten und nächtens, Podcasts zu hören. Dazu gehören in erster Linie Podcasts zu technischen Themen. Darunter ist auch ein Podcast, der sich „Retrokompott“ nennt und sich mit Homecomputern und Technik aus unserer Jugendzeit beschäftigt. Deren Slogan lautet:

Retrokompott, eine Zeitreise in die Vergangenheit alter Homecomputer, Spielekonsolen und Games

[http://blog.retrokompott.de/]

In einem der Beiträge von Retrokompott diskutierte man einige Folgen lang (172-177) über die Vectrex, den Heim – Vectorspieleautomaten von MBE. Hier wurden unter anderen auch Homebrewprojekte, also Software-Eigenentwicklungen der Anwender vorgestellt.  „Vectorblade“ ist dabei ein Spieletitel, der von Malban [http://vide.malban.de/] entwickelt wurde. Das Projekt wurde dabei mit dem ebenfalls von Malban entwickelten Vectrexcompiler (vide) erstellt. Die Sourcen sind öffentlich auf der Website verfügbar. In dem „Kompott“-Beitrag hat man so begeistert über Vectorblade berichtet, dass mein Interesse dafür geweckt war. Das Spielemodul war auch eine Zeit lang über Malban zu erwerben. Ich habe aber keine Quelle gefunden, über die ich das Modul auf einfache Weise erwerben kann. So dachte ich mir, baue ich mir das halt einfach nach. Das Besondere an diesem Gamerom ist die Größe des Games. Es hat stolze 192 kB. Um diesen Speicher adressieren zu können, hat sich Malban der Bank-Switching Technologie bedient. Er verwendet in seinem Design einen Flash-Speicher von SST, den SST39SF020. Das Bankswitching wird über einen Vierfach-2-Eingang NAND Schmitt Trigger (74AC132) gesteuert. Malban hat auf git das Layout veröffentlicht. Dort verwendet er den Speicher im DIL-Package und ebenso auch den AC132. Eine detaillierte Anleitung findet man hier.

Da ich von meinem alten Selbstbau-Rom Modul Projekt noch einige Platinen über habe, konnte ich schnell einen Versuchsaufbau zusammenstoppeln.  Flashspeicher hatte ich zwar keinen zur Verfügung – sehr wohl aber eine ausreichend großes EPROM. Der Vide-Compiler und die Source-Files sind auf Malbans GIT ebenfalls veröffentlicht. Nach kurzem Studium seines Vide-Compilers ist es mir gelungen das Projekt zu kompilieren und eine ROM – Datei zu erstellen. Mit meinem „Fernostprogrammer“ konnte ich dann das EPROM „brennen“.  Mit ein paar Drahtbrücken und einem AC132 wurde aus meinem alten ROM-Platinen Projekt dann der Vectorblade Versuchsaufbau.

Versuchsaufbau Vectorblade

Mit der Ausnahme, dass keine Settings gespeichert werden können, funktioniert der Testaufbau und das Game lässt sich spielen :). Der nächste Schritt des Nachbaus war dann die Platine zu zeichnen. Hier wollte ich den Schmitt-Trigger Baustein in SMD Ausführung einbauen und den SST weiterhin in DIL. Ich habe diese Ausführung auch realisiert und erfolgreich getestet. Es gibt aber einen kleinen Haken – keiner meiner Lieferanten hat den SST39SF020 Flashspeicher in DIL Ausführung auf Lager. Ich habe jetzt zwar einige Platinen mit DIL – Layout aber eben keine Chips… Also noch einmal zum PC und das Design auf PLCC Sockel umzeichnen. Gedacht – getan und einen Satz Platinen beim Fernostproduzenten bestellt.

Ein passendes Gehäuse lässt sich mit dem 3D-Drucker selbst erstellen. Genauer gesagt wurde ich auf Thingiverse fündig und konnte  aus einer Vielzahl an geeigneten Designs wählen.

Es fehlt zwar das Overlay –  aber auch ohne das macht das Spiel Spass. Hier ist Malban ein tolles Game gelungen.

Ich suche EINE Taste vom Commodore Plus4

Loading

Der Titel sagt ja schon alles. Ich bin auf der Suche nach der RUN/STOP Taste für einen Commodore Plus 4 Computer. Das Modell, das ich herrichte ist bis auf eben diese fehlende Taste schon fertig. Ich habe in der Bucht und auf Flohmärkten gesucht, aber niemand kann mir da helfen, bzw. man bekommt ganze Tastaturen, aber leider zu einem unfairen Preis. Falls also irgendjemand einen Plus4 zum Schlachten herumstehen hat und mir mit der Taste zu einem fairen Preis helfen kann – das würde mich sehr freuen.

Amiga – Genlock Kabel

Loading

Vor einiger Zeit habe ich über das Amiga Genlock „VESONE“ einen Beitrag verfasst. Der ist unter dem Titel „Amiga und Genlock“ zu finden. (link)

Es gibt anscheinend doch noch einige Leute, die ein solches Gerät besitzen und es wieder in Betrieb nehmen möchten. Da aber, so wie auch bei mir, die notwendigen Kabel, Software etc, nicht unbedingt dort gelagert sind, wo auch das Gerät ist, kann es schwierig werden. Ich dachte mir zwar, dass es keine Rolle spielt, denn wofür gibt es denn das Internet – doch weit gefehlt. Man findet nichts. Das habe ich jetzt gemerkt als mich ein Blogbesucher nach dem Pinout des RGB zu Genlock Kabel gefragt hat. Ich habe nichts im Netz gefunden. Doch tief in den Schachteln im Keller in diversen Kabelkisten hatte ich Glück. Das Kabel tauchte auf. Um die Steckerbelegung nun auch mit andrern Retrofans zu teilen habe ich die Pinbelegung heraus gezeichnet und stelle sie hier online.

Hier also die Bilder und das Pinout (Amiga_VESGenlock_Cable)

FPGA CPU für Commodore 16

Loading

Meine erste Begegnung mit Computern hatte ich in den frühen 80iger Jahren, als meine Kollegen im Gymnasium ihren ersten VC20 und C64 von Commodore bekamen. Das war damals eine völlig neue Welt für mich – ein Computer – ein Gerät mit Tasten, wie bei einer Schreibmaschine, das man am Fernsehgerät anschließt. Und man kann in einer Sprache, die sich „Basic“ diesem Computer Befehle erteilen, die er dann ausführt.  Man konnte sogar ganze Programme schreiben und diese dann mit dem Befehl „RUN“ starten. Und dieser Computer arbeitete diese Programme dann ab. Das war faszinierend und eröffnete uns damals neue Welten. Erst recht als ich Kassetten bekam, die wie Musikkassetten aussahen, jedoch für den Computer gedacht waren. Darauf befand sich, spielte man sie in einem Kassettenspieler ab, ein Gepiepe, das man später von Faxgeräten oder der Einwahlsequenz von Modems kannte.

Stöpselte man den Kassettenplayer jedoch mit einem Klinkenkabel in den Computer und gab dort den Befehl „LOAD“ ein, so wurde aus dem Gepiepe ein Spiel oder ein Musikprogramm, oder was auch immer auf der Kassette gespeichert war. Jedenfalls war das das Tollste was man als Kind besitzen konnte. Und den jugendlichen Adrenalinschub bekam ich, als unter dem Weihnachtsbaum mein eigener Commodore C16 mit zugehöriger Datasette und der Spielekassette BigMac lag. Der Commodore C16 war also mein erster richtiger Computer. Es dauerte nicht lange, da waren die 16kB (KiloByte) Ram, die der C16 hatte zu wenig für die selbst gebastelten Basic Programme. Und was noch schlimmer war, es gab auch tolle Spiele, die mit 16k nicht liefen. Dazu gehörte der Kampfflugsimulator „ACE“ und das Vector-Grafikgame „MERCENARY“. Also musste der Computer aufgerüstet werden. Das war aus heutiger Sicht sehr einfach – es mussten lediglich zwei DRram Bausteine ausgelötet und gegen andere ersetzt werden. Damals jedoch, im Alter von – ich denke 11-12 Jahren, war das mangels geeignetem Lötwerkzeug und Erfahrung eine Herausforderung. Doch irgendwie hat es geklappt und der C16 meldete sich mit folgender Statuszeile:

COMMODORE BASIC V3.5 60671 BYTES FREE

READY

Das war im Vergleich zum originalen Speicher, von dem für den Basic Interpreter gerade einmal 12277 Byte frei verfügbar waren, ein Paradies an neuen Möglichkeiten. Leider war die Lebensdauer des Commodore 16 im Dauerbetrieb nicht sehr lange. Ich denke, es hat nicht mal ein Jahr gedauert, da zeigte der Rechner erste Probleme. Entweder reagierte der Cursor nicht mehr, es kamen wirre Zeichen am Bildschirm, oder er startete erst nach häufigem Aus- und wieder Einschalten. Irgendwann blieb der Bildschirm dann ganz schwarz.  Schuld daran war, zumindest vermute ich das heute, der Hitze Tod der CPU und/oder des TED IC´s. Damals konnte man diese Chips in den einschlägigen Elektronikläden noch für kleines Geld bestellen. Heute sieht das aber anders aus. Eine MOS7501 oder MOS8501 CPU findet man, wenn überhaupt, dann nur bei eBay und co. und das für Preise von 50 Euro und mehr für gebrauchte Chips.

MOS7501 (MOS8501) CPU der Commodore 264er Reihe

In meiner Sammlung besitze ich einige wenige Exemplare der 264er Serie von Commodore, die mehr oder weniger alle in einem originalen, einwandfreien Zustand sind (C16, C116, Plus4). Aber eben nicht alle. So habe ich mir in den Kopf gesetzt, die 8501 CPU in einen FPGA zu implementieren, eine kleine Platine zu entwerfen, die die Größe eines DIL40 IC´s hat und direkt in den CPU-Sockel des C16 bzw. Plus4 passt. Es existieren ja bereits einige erfolgreiche Projekte, die sich mit der Implementierung eines 8Bit CPU Core in einen modernen FPGA befassen.  Hier die Links:

Sellmy Retro: https://www.sellmyretro.com/offer/details/mos–7501~~8501-cpu-replacement-for-c16~~116~~%2B4-30475

oder ein universal konfigurierbarer CPU – FPGA Ersatz: https://hackaday.io/project/165624-mocka65xx-universal-650285xx-cpu-replacement

Ich habe mich aus Kostengründen und auf Empfehlung entschlossen, mit einem Lattice MACHXO FPGA zu arbeiten. Ein Evaluation Board ist für unter 30 Euro zu bekommen und für die Entwicklungsumgebung bekommt man bei Lattice eine gratis Lizenz. Einziger Nachteil – ich hatte bis dato keine Erfahrung mit Lattice Produkten. In meinen beruflichen Projekten wird hauptsächlich mit XILINX gearbeitet. Aber nach der Installation der Lattice-Software und ein bisschen Übung war schnell klar, damit sollte ich zurechtkommen.

LATTICE MACH XO Evaluationboard

 

Ich habe mir also vorgenommen, diesen Beitrag als dynamischen Beitrag zu gestalten und immer wieder zu erweitern. Da meine letzten FPGA Projekte wieder einige Zeit zurückliegen und ich mich auch wieder in die FPGA-Welt eingewöhnen muss, wird es wohl einige Zeit dauern bis (falls) ein brauchbares Ergebnis zustande kommt. Zu Beginn steht die Analyse des Datenblattes des MOS8501 IC und dessen Pins zur Außenwelt. Der 8501 ist eine abgeänderte Version des 6502 (die CPU aus dem Jahr 1975 die in vielen Rechnern eingesetzt wurde). Dazu zählen unter anderem der VC20, der Atari800, auch der APPLE 1 usw. arbeiteten mit dem 6502 Prozessor. Der 6502 ist auch schon als Verilog und VHDL Modell verfügbar… Diese Cores mit den Anpassungen für den 8501 will ich in den MachXO reinquetschen und mit entsprechender Anpassung der Signallevels direkt statt dem originalen MOS-Chip in das C16 Mainboard stecken…

 

 

 

 

 

 

 

8-Bit Generation: Der ZX81 oder Timex Sinclair 1000

Loading

Sinclair Timex 1000

Ein neues Exemplar aus der 8 – Bit Computer Ära hat Einzug in meine kleine Sammlung gehalten. Ein Timex Sinclair 1000 – ein 8Bit Heimcomputer der 80er Jahre auf Basis des Sinclair ZX81. An dieser Stelle möchte ich mich bei Herrn Roland Pufitsch recht herzlich bedanken. Er hat mir den Timex 1000 als Spende zur Verfügung gestellt – Vielen Dank.

Der Timex Sinclair 1000 oder auch TS1000 ist das Ergebnis eines Joint Ventures des Herstellers Sinclair Research Ltd. und der Amerikanischen Timex Corporation. Das Gerät basiert auf dem Sinclair ZX81 und ist auch vollkommen kompatibel zum Z81 und gilt als die nordamerikanische Version des ZX81. Auch die technischen Daten unterscheiden sich kaum. Lediglich der Speicher wurde mit 2kB doppelt so groß ausgeführt wie beim ZX81.

Veröffentlicht und verkauft wurde der TS1000 im Juli 1982 zu einem Preis von unter 100$. Er galt damals als der günstigste Heimcomputer. 1983 wurde die Produktion dieses Modells dann wiedereingestellt. Die technischen Daten gleichen denen des ZX81.

Mainboard des TS1000

CPU:                         Zilog Z80 mit 3.25 MHz Taktfrequenz
Speicher:                2kB, erweiterbar auf max. 64kB
Anschlüsse:           Audio In, Audio Out für den Datenrecorder
Memoryslot für die Speichererweiterung
RF-Modulator Ausgang (Kanal VHF 2  oder 3)
Auflösung:              22 x 32 Zeichen
Ton:                             nicht vorhanden
Betriebssystem:  BASIC Interpreter im ROM

Auf dem Mainboard sind gerade einmal vier ICs verbaut, ein HF-Modulator und die Peripherie für die Spannungsstabilisierung und -versorgung, sowie die IO – Anschlüsse für den Datenrecorder und die Federleisten für die Folientastatur. Die verbauten IC´s sind folgende:

CPU:  der Zylog Z80 Prozessor (in vielen Modellen ein NEC Z80 mit der Bezeichnung D780C-1 im 40Pin Plastik DIP – Gehäuse

ULA: ein Custom IC mit der Bezeichnung ULA 2C21 0E. Dieser Chip ist die ULA des ZX81 und Timex1000 (Uncommited Logic Array). Dieser IC generiert den 6,5 MHz Takt von dem eine 3.25 MHz Clock für den Prozessor geteilt wird. Er managet die Audi IN und Audio OUT Datensignale zum Datenrecorder. Er generiert den Synchrontakt für die Videoausgabe. Er handelt die Tastaturmatrix und steuert den ROM und RAM Zugriff. Dieser Customchip ist heute in einer FPGA, oder CPLD Nachbildung erhältlich, bzw. wird der VHDL Code dafür in entsprechenden Foren veröffentlicht und kann selber synthetisiert werden.

ROM: der Chip mit der Bezeichnung ZCM38818 ist der ROM Baustein der den Basic Interpreter beherbergt. Alternativ kann hier auch ein 2364 8kbit Prom verwendet werden.

RAM:  als Ram ist hier entweder ein 2kB DRam Chip oder ein 1kB DRam verbaut (Mostek MK4801/MK4118)

Bei dem hier vorliegenden Modell stand nun eine erste Inspektion an. Dabei ist mir gleich eine DB9 Male – Buchse aufgefallen, die nachträglich eingebaut wurde. Nach dem Öffnen des Gehäuses ist mir schnell aufgefallen, dass das Flex Kabel der 5poligen Tastaturfolie vollständig abgebrochen ist. Und genau diese fünf Pins der Federleiste, in die das Flex Kabel gesteckt ist, sind mit der DB9 Buchse verbunden. Es hat hier anscheinend eine externe Reparaturlösung für das defekte Keyboard gegeben. Die DB9 Buchse könnte aber auch eine Nachrüst-Joystick Lösung gewesen sein, denn auch eine +5V Leitung war zur Buchse geführt. In diesem Fall egal. Ich wollte das Gerät in einen annähernd originalen Zustand versetzen. Dazu musste erst einmal die 9polige Sub-D Buchse heraus.

Nachträglich eingebaute SUB-D Buchse
Abgebrochenes Flexkabel zur Folientastatur

Die Buchse war schnell ausgebaut und die Drähte entfernt. Jetzt ging es daran, das Flex Kabel zu retten. Die einfachste Möglichkeit wäre natürlich, eine neue Folientastatur zu erwerben, und diese dann einzubauen. Aber hier ist das Kabel knapp ober dem Stecker gebrochen und ich dachte mir, es wäre einen Versuch wert, einfach mit der verbleibenden Länge des Flex Kabels auszukommen. Dazu habe ich das Kabel am gebrochenen Ende einfach wieder gerade geschnitten, mit ein wenig Captan-Tape verstärkt und wieder in die Federklemmleiste eingesteckt. Die auf den Kunststoffträger aufgebrachten Leiterbahnen sind sehr dünn und empfindlich. Man sollte hier auch nicht versuchen zu Löten und die Leitungen mit einer Lötverbindung zusammenzufügen.

Das abgebrochene Stück Flexleitung neben der Zuleitung zur Folientastatur
der zugeschnittene verbleibende Rest

Nachdem die Tastatur nun wieder funktionieren sollte, wurden auf dem Mainboard die obligatorischen Arbeiten, wie Elkotausch und Prüfen der Spannungsversorgung durchgeführt. Eine kleine Änderung, die sich funktionell vom Originalzustand unterscheidet, ist der Umbau des Antennenausgangs auf einen Videoausgang. Hierzu wird der HF-Modulator lahmgelegt. Das bedeutet, die +5V Versorgung zum Modulator wird getrennt, die Leitung zum Signalpin der HF-OUT Buchse getrennt und ebenso die vom Mainboard kommende VBS-Leitung (also das Videosignal). Die nun offene Videoleitung wird über einen 100µF Elko zur ehemaligen HF-Out Buchse geführt und ist somit DC-mäßig entkoppelt.

RF-Modulator ohne Deckel
Trennen der Leitungen
Einbau des Koppelkondensators

Danach folgte eine erste Inbetriebnahme. Das Videosignal wurde an einen Multinormen-Monitor angeschlossen und das vorher überprüfte 9V Netzteil an die Buchse für die Spannungsversorgung.

erster Funktionstest

Das Ergebnis war äußerst positiv. Das Einschaltbild erschien sauber auf dem Bildschirm. Die Tastatur funktionierte ebenfalls einwandfrei. Jetzt bleibt nur noch, die Bohrlöcher und Öffnungen der SUB-D Buchse sauber zu verschließen und dann kann das Gerät wieder zusammengebaut und in die Vitrine gestellt werden…

 

Amiga und Genlock

Loading

Dieses Gerät oder besser gesagt, diese Geräteklasse werden sicherlich viele Commodore Amiga Anwender kennen, die den Amiga seinerzeit auch bei der Videonachbearbeitung benutzt haben.

Das Amiga Genlock VES one

Das Amiga Videosignal hatte ja genau die Zeilenfrequenz der damaligen Fernsehstandards (15,625kHz). Also konnte als Monitor am Amiga ja auch ein Fernseher angeschlossen werden. Vorausgesetzt es war ein Fernsehgerät mit einem R-G-B Scart Videoeingang. Als Bastler hat man sich aus den R-G-B und Sync-Ausgängen des 23poligen Amiga Monitor einen CVBS (Color-Video-Blanking-Sync) Converter zusammengelötet, der alle Signale zu einem Signal zusammenfasst. Und das war im Heimvideobereich das klassische Videosignal, das man aus jeder Kamera oder jedem Recorder herausbekam. Also wurde der Amiga dann einfach an den Videorecorder angeschlossen und schon war eine tolle Deluxe Paint Grafik das Titelbild des letzten Urlaubsfilmes…

Effekte und Fader des VESone

Was aber, wenn man damit noch nicht zufrieden war und beispielsweise in das Videobild Titel (Bauchbinden) und Grafiken eingeblendet haben wollte? – Das ging nicht so einfach. Dafür gab es das „Genlock“ (Generator Lockingdevice). Hierbei machte man sich die Eigenschaft des Amigarechners AGNUS-(später ALICE) Chipssatzes zu nutzen, der als Adressgenerator und Timingchip im Amiga arbeitete. Dieser Custom Chip konnte extern synchronisiert werden. Und genau das machte sich das Genlock zu nutzen. Denn um zwei Videosignale zeilengenau mischen zu können, ist es notwendig, dass sie auch taktgenau anliegen (das bedeutet, sie müssen in Frequenz und Phase des Bildwechsels synchron anliegen).

Korrekturmöglichkeiten der Signalquellen

Das Genlockinterface oder (der Genlock) gewann aus dem angelegten Videosignal einer Videokamera oder eines Videorecorders den Referenztakt und synchronisierte den Amiga nach diesem Takt. So waren jetzt beide Signale – sowohl das Monitorsignal des Amigarechners und das Videosignal der Videokamera oder -recorder taktgleich.  Jetzt können die beiden Signale gemischt werden. Es existierten einige Geräte auf dem Markt von ganz einfachen Genlocks, die lediglich den „Alpha Farblayer“ des Amigarechners heranzogen und gegen das Videosignal der externen Quelle ersetzten. Damit konnten schon wunderbar Titel und Grafiken im Videofilm realisiert werden. Wollte man diese noch Ein- und Ausblenden bzw. noch die Sättigung, Helligkeit und Kontrast der beiden Quellen anpassen, dann konnte man komplexere Geräte erwerben. Hier ist ein semiprofessionelles Genlock der Firma Videocomp, das VESone (Video Effect System) dargestellt.

Anschlüsse des VESone

Es gab aber auch noch professionelle Geräte, die in Fernsehstudios eingesetzt wurden um zum Beispiel die Senderlogos in das laufende Programm einzublenden. Diese Profigeräte hatten mehrere Signalstandards als Ein- und Ausgänge zur Verfügung. CVBS, YC (S-VHS), RGB. Vor allem die getrennte RGB-Verarbeitung der Signale ermöglichte viel bessere Bildqualitäten.

Innenleben des VES one

Als Herzstück arbeiteten im VESone die folgenden IC´s:

Ein SAA1043 Universal Sync Generator generiert alle Syncsignale, ein TDA8390 Pal Decoder und RGB Matrix Chip ermöglicht das Mischen und Einfügen eines externen RGB Signals. Als RGB-Video Amplifier kommt ein LM1203 Chip zum Einsatz.

Als Software zur Erstellung von Grafiken, Animationen und Titeln aller Art, kamen Programme wie: Amiga Videotitler, Adorage, Deluxe Paint, Broadcast Titler, Scala Multimedia (ScalaMM), Texture Studio, ART Effect, Imagine etc.  zum Einsatz.

 

 

Alter Computer wieder schön – oder wie man Kunststoff entgilbt

Loading

vergilbter C64

Als Sammler der 80iger Jahre Computer sind sicher schon viele mit dem Problem der „gelben“ oder „vergilbten“ Kunststoffgehäuse konfrontiert worden. Die Gehäuse sehen aus, als wären sie Jahre lang in einem Raucherzimmer gestanden und haben durch das Räuchern die Farbe angenommen. Das mag vielleicht für einige auch zutreffen, doch im Allgemeinen ist es das Material bzw. die Materialmischung und der UV Anteil des Sonnenlichtes, der das Vergilben verursacht. Die Gehäuse bestehen aus ABS (Acrylnitril-Butadien-Styrol-Copolymere) einem thermoplastisch formbaren Kunststoff, der in seinem Urzustand farblos bis grau ist. Durch Zusatz von Farbstoffen werden die Granulate, die vorwiegend im Spritzgussverfahren verarbeitet werden, in allen erdenklichen Farben hergestellt. Um die Materialeigenschaften auch dahingehend zu optimieren, dass sie flammhemmend und schlecht brennbar sind, wird Brom zugesetzt. (quelle: Internet). Und genau das Brom verursacht mit UV Licht die Gelb-bräunliche Färbung des Materials.

Tasten eines Amiga 1200

Will man nun so ein altes Gerät restaurieren und wieder in seinem originalen Glanz erstrahlen lassen, so reicht es leider nicht, die Gehäuseteile mit Seifenlauge oder ähnlichen Mittelchen zu waschen. Hier löst sich zwar jeglicher Schmutz und Verunreinigungen, aber der „Gilb“ bleibt. Ich habe an einem kleinen Teststückchen wirklich einiges versucht, die Vergilbung zu entfernen. Mit Isopropanol, Terpentin, Waschbenzin, Kunststoffreiniger, Scheuermilch, Platinenreiniger, etc. – alles vergeblich. Ein mechanischer Abtrag der Oberfläche durch Anschleifen funktioniert zwar, aber dann kann man das Gehäuse gleich entsorgen. Im Netz findet man eine geeignete Lösung. Es gibt hier ein Produkt namens „Retr0bright“, das im Wesentlichen aus Wasserstoffperoxid und einem Verdickungsmittel besteht. Mit diesem Mittel bestrichen und dem direkten Sonnenlicht für mehrere Stunden ausgesetzt, wirkt es Wunder. Das Peroxid bleicht mit der UV-Strahlung die Verfärbung des Kunststoffes, sodass er wieder seine ursprüngliche Farbe annimmt. Also habe ich beschlossen, diese Methode zu testen und mir in einer Apotheke 12% iges Wasserstoffperoxid gekauft.

Peroxid und Verdickungsmittel

Als Verdickungsmittel wollte ich Xanthan verwenden, doch das war in unserem „Dorf“ nicht zu bekommen. Hier wurde mir, ebenfalls in einer Apotheke ein Nahrungsverdickungsmittel auf Maisstärke-Basis verkauft. Auch das erfüllt seinen Zweck.  Was ich jedoch dabei gelernt habe – solche Dinge nicht mehr in einer Apotheke zu kaufen. Denn die Preise dort sind extrem. Allein für das Peroxid musste ich 28 Euronen hinblättern. Der „Dickmacher“ kostete mich nochmal 16 Euro… Das bekommt man online viel, viel günstiger. Aber jammern hilft nicht – also machte ich mich an die Mischung. Eine halbe Tasse Peroxid und drei Teelöfel „ThickenUP“ geben eine gut verarbeitbare Konsistenz. Mit einem Pinsel habe ich die Gehäuseteile möglichst gleichmäßig bestrichen und mit Frischhaltefolie abgedeckt. (Dies wird in einigen Internetforen beschrieben, um die Austrocknung der Bleiche zu verhindern) Dabei ist es notwendig, die Frischhaltefolie so glatt und faltenfrei wie möglich auf die Oberfläche aufzulegen. Jede Falte ist dann im Bleichergebnis zu sehen. Danach kommen dann alle Teile in die Sonne. Ich habe sie einen Tag lang in der Sonne liegen lassen, am nächsten Tag nochmal bestrichen und wieder der UV-Strahlung ausgesetzt.

1541II er Floppygehäuse beim „Bleichen“

Nach der Belichtungs- und Reinigungsprozedur wurde wieder zusammengebaut… Die Ergebnisse sind teilweise hervorragend, aber auch mittelmäßig. Besonders wichtig ist es, einen homogenen Auftrag der Bleiche und eine konstante gleichmäßige Ausleuchtung zu erreichen. Die Lösung mit der Frischhaltefolie funktioniert zwar, ist aber noch nicht das Gelbe vom Ei. Hier die Ergebnisse:

Commodore C64

 

Amiga 1200

8-Bit Generation: Der Sinclair ZX-Spectrum

Loading

Der ZX-Spectrum von Sinclair

Am 23.April 1982 ist der Sinclair ZX Spectrum von der Firma Sinclair Research auf den Markt gebracht worden. [Quelle: Wikipedia] Er wurde damals zu einem Preis von umgerechnet 140 Euro bzw. 194 Euro verkauft. Die zwei Preise beziehen sich auf die 16kByte Version bzw. auf die 48kByte Version.  16kByte und 48kByte sind die Größen des RAM-Speichers mit der die Rechner ausgestattet wurden. Der ZX-Spectrum ist der Nachfolger der Sinclair ZX81 und der Vorgänger des ZX-Spectrum Plus und Sinclair QL.

Der kleine Rechner (die Abmessungen betragen gerade einmal 23.5cm *14.5cm*3cm) wird von einer Z80A CPU angetrieben, die mit 3.5MHz Taktfrequenz arbeitet. Die ULA (Uncommitted Logic Array) ist der größte Chip auf dem ZX-Mainboard. Sie ist verantwortlich für die Grafik, die Audio IO´s (für das Laden und Speichern der Programme auf Kassette) und für die Keyboardeingaben. Dann befinden sich, je nach Ausführung noch die DRAM-Chips (Upper und Lower RAM) auf dem Board und noch ein ROM – IC, der den BASIC Interpreter beherbergt. So schafft es der kleine Rechner bunte Grafiken auf den Bildschirm zu zeichnen und das mit einer Auflösung von 256 x192 Pixeln bei 15 Farben. Die Bildausgabe wird über einen eingebauten RF-Modulator an den Antenneneingang eines Fernsehers gesendet. Mit Bildausgabe meine ich aber wirklich nur das „Bild“, denn für den Ton wird nicht der Audiokanal der TV-Gerätes benutzt. Dafür gibt es am Mainboard einen kleinen Lautsprecher, der die Geräusche des Rechners ausgibt. Die wiederum werden nicht wie etwa beim C64 in einem eigenen Chip (SID-Chip) erzeugt und das noch in mehreren Stimmen – nein dafür wird der MIC/TAPE Pin der ULA verwendet, der den Lautsprecher einfach über einen Transistor an 5V schaltet. Damit können dann einfache „Beep-Geräusche“ erzeugt werden. Aus heutiger Sicht betrachtet, ist das natürlich gar nichts Besonderes, aber für all jene, die damit in Ihrer Kindheit konfrontiert waren, sind bestimmt auch einige Erinnerungen damit verbunden. So eben auch für mich. Ich hatte damals zumindest die Möglichkeit, zusammen mit meinem Bruder ein solches Gerät von einem Freund ausleihen zu dürfen. Darauf wurde dann natürlich – wie kann es anders sein – gespielt. Titel wie „Manic-Miner“, „Ant-Attack“ oder Flight-Simulator, gehörten zu den am häufigsten geladenen Kassetten. Ja – Kassetten. Zu der Zeit war es üblich, die Programme auf einer Audiokassette zu kaufen. An den ZX-Spectrum wurde ein einfacher Kassettenrecorder über die Kopfhörerbuchse angeschlossen und über die Gummitasten des ZX der Befehl LOAD „“ eingegeben. Dann musste man am Kassettenrecorder nur mehr Play drücken und es konnte losgehen. Voraussetzung war natürlich, dass die Bandgeschwindigkeit und der eingestellte Lautstärkepegel passten. Nur dann war das Laden des Programmes erfolgreich und das Spiel startete. Die Ladezeiten betrugen je nach Programm von zwei bis oft über zehn Minuten.

Datenrecorder zum Laden und Speichern von Programmcode

In meiner 8Bit – Retrorechner Sammlung fehlte bis jetzt die komplette Serie der Sinclair Rechner, doch endlich konnte ich ein Schnäppchen machen und ein ganzes Set mit ZX-Spectrum, Joystickmodul, einem Datenrecorder und vielen originalen Spielekassetten erwerben. Die Aufbereitung und Restauration des ZX möchte ich hier kurz beschreiben. Wenn man einen Rechner mit unbekannter Vorgeschichte, der sicherlich die letzten 30 Jahre in irgendeinem Keller herumgelegen hat, in die Hände bekommt, so sollte man keinesfalls versuchen, ihn direkt in Betrieb zu nehmen. Falls er es nicht ohnehin schon ist, könnte das dann sein Tod sein. Denn wie immer gibt es darin einige Teile, die altern und ihre Parameter ändern können. Es könnte auch jemand vorher darin herumgebastelt haben um etwas zu reparieren oder umzurüsten.  In diesem Fall war das Gehäuse zwar staubig und schmutzig, aber es gab keine fehlenden Schrauben, Dellen oder von außen ersichtliche Nachrüstungen, wie Taster oder Stecker. Also konnte ich die Gehäuseschrauben lösen.

Die Tastaturfolie war schnell aus den Klemmbuchsen gezogen und der Deckel mit den Gummitasten entfernt. Jetzt offenbarte sich das Innenleben des Spectrum – und was soll ich sagen – 1A. Alles im Originalzustand. An dem Gerät wurden noch keine Reparaturen oder Basteleien durchgeführt. So begann ich zuerst mit der Reinigung der Gehäuseteile. Die Tastatur ist einfach zu zerlegen. Bei dieser Revision des Spektrums (ISSUE 4A) ist das Blech, das die Gummimatte im Gehäuse hält, mit vier „Messing Biegenasen“ befestigt. Diese lassen sich leicht zurückbiegen und das Blech entfernen. 

Frontblech und Gummitastenmatte entfernt
freigelegte Tastaturfolie

Die Gehäuseteile waren jetzt ganz einfach zu reinigen. Ich habe sie mit Seife unter lauwarmem Wasser gespült. Auch die Rückstände zwischen den Tasten der Gummimatte ließen sich so leicht entfernen. Während die Teile jetzt zum Trocknen beiseitegelegt wurden, widmete ich mich dem Mainboard.

Mainboard des ZX-Spectrum 48K Issue 4A

Hier waren alle Lötstellen sauber, keine Spuren von Fremdeingriffen und alle Teile noch im Originalzustand. Also konnte ich direkt mit den ersten Prüfungen beginnen. Mit einem Ohmmeter wurde zunächst auf Kurzschlüsse im Bereich der Spannungsversorgungen geprüft. Wenn man sich die Schaltpläne des Spektrums ansieht, so kann man schnell erkennen, dass der Rechner mit einer Eingangsspannung von DC9V versorgt wird. Wobei hier die Belegung der Netzteilbuchse zu beachten ist. Hier ist der Plus-Pol nicht der innere Stift, sondern der äußere Ring des Steckers. Dies ist besonders wichtig, wenn das originale Netzteil nicht mehr vorhanden ist und man einen Ersatz nimmt. Der weitere Aufbau des Versorgungskonzeptes ist wie folgt: Aus den 9VDC wird über einen Linearregler 7805 die +5V Versorgung gemacht. Über eine DC/DC- Converter Schaltung bestehend im Wesentlichen aus den Komponenten TR4 und TR5 und einem kleinen Transformator (Zylinderspule mit zwei Wicklungen), werden eine 12VDC und weiters eine -5VDC Spannungsversorgung generiert.  Diesem Bereich gilt eine besondere Aufmerksamkeit, denn hier kann eine falsche oder fehlende Spannungsversorgung weitere Bauteile (insbesondere die DRAM-ICs) beschädigen. Dazu sind mit einem Dioden Tester die Transistoren auf ihr Durchlass- und Sperrverhalten der PN-Übergänge zu prüfen. Den kleinen Übertrager testet man am einfachsten mit dem Ohmmeter auf niederohmiges Verhalten der jeweiligen Wicklung und auf ein hochohmiges Verhalten zwischen Primär- und Sekundärwicklung. Ist hier alles in Ordnung testet man noch den Ausgang jeder der drei Spannungsquellen gegenüber dem Masse 0V Potential. Hier sind folgende Richtwerte zu messen:

  • Eingang des Linearreglers (9V) gegen GND -> ca. 100k-150k
  • Ausgang des Linearregler (+5V) gegen GND oder an Pin9 des RAM ICs -> ca. 300 – 500 Ohm
  • Pin1 des RAM ICs (-5V) gegen GND -> ca. 300 Ohm (im 400Ohm Messbereich)
  • Pin8 des RAM ICs (12V) gegen GND -> ca. 2.6k bis 2.8kOhm
Elektrolytkondensatoren erneuern

Im nächsten Schritt werden die über 30 Jahre alten axialen Elektrolytkondensatoren getauscht. Dies ist eine reine Vorsichtsmaßnahme, denn wie allseits bekannt, ändern diese Teile gerne ihre Werte mit der zunehmenden Alterung oder laufen aus. Und was ausgelaufene Elektrolyten so alles anrichten können, habe ich ja schon in älteren Beiträgen gezeigt. Um dem ZX also wieder ein längeres Überleben zu ermöglichen, werden alle Elkos getauscht.

die alten Elkos
Mainboard mit neuen radialen Elkos

Sind diese Arbeiten erledigt, dann beginnt jetzt der spannende Teil. Die Spannungsversorgung wird eingeschaltet. Am besten man versorgt den ZX über ein Labornetzteil mit einstellbarer Strombegrenzung. Er darf nach dem Einschalten nicht mehr als 750mA bei 9VDC nehmen. Passt auch das, können die Spannungen (am besten an einem der Lower RAM-ICs gemessen werden). Hierbei sollte an PIN1 -5V, an PIN9 +5V und an PIN8 12V gemessen werden.

Umbau des RF-Modulators auf Videoausgang

Um den ZX-Spectrum auch an ein Sichtgerät anschließen zu können, gibt es den RF-Modulator, der das intern generierte Composite-Videosignal auf einen UHF – Kanalträger moduliert, um damit einen klassischen analogen TV zu bedienen. Da Fernsehempfänger mit analogem Tuner mittlerweile kaum mehr vorhanden sind, aber viele TV zumindest einen SCART oder Videoeingang besitzen, wird der RF-Modulator des ZX-deaktiviert. Die ehemalige Antennenbuchse wird zu einem Videoausgang umfunktioniert. Zuerst werden die beiden Drähte, die aus dem Modulator herauskommen vom Mainboard abgelötet. (Dies sind +5V und CVBS).  Dann wird innen im Modulator der Pin des Widerstandes vom Innenleiter der Antennenbuchse abgelötet und weggebogen. Somit ist der Modulator von der Schaltung komplett getrennt. Jetzt muss nur mehr der CVBS Ausgang vom Mainboard über einen Kondensator an den inneren Stift der Buchse gelötet werden. Der Kondensator sollte dabei um die 100uF haben. Er dient als DC-Entkopplung des Signals.

Wenn das alles erledigt ist, dann kann jetzt angeschlossen und eingeschaltet werden. In meinem Fall war es ein voller Erfolg. Der Sinclair meldete sich sofort mit seinem grau hinterlegten Einschaltbild „(c) 1982 Sinclair Research Ltd

Als nächstes versuchte ich ein altes Originalspiel (Backgammon) über den Kassettenrecorder (Datarecorder) in den ZX zu laden. Das klappte vorerst nicht. Manchmal wurde ein Teil geladen, dann wieder nicht und es kam zu „Tape Error“ Meldungen. Also wurde der Kassettenrecorder auch noch schnell überholt. Ein neuer Riemen sorgte für einen besseren Gleichlauf des Bandes und eine Kopfreinigung für schönere Pegel des Ausgangssignals. Doch auch jetzt klappte das Laden noch nicht. (das erinnerte mich doch stark an die damalige Zeit, wo oft sehr lange versucht wurde ein Spiel zu laden) Also sah ich mir mit dem Oszi das Ausgangssignal an und vor allem die Periodendauer des Initalsignals (der erste Pfeifton am Band 🙂 )

Einstellung der Bandgeschwindigkeit

Hier war es, das Problem. Die Frequenz des Initalsignals lag bei ca. 890-910Hz. Das bedeutet das Band läuft viel zu schnell. Das Problem ist schnell behoben. Fast jedes Kassettenlaufwerk hat ein kleines Poti mit dem man die Bandgeschwindigkeit des Servoantriebes einstellen kann. Auch so in diesem Fall. Die Frequenz sollte so um die 800Hz liegen. Das Ergebnis war dann folgendes:

 

Hier ist das Programm aus mp3 Datei: Backgammon

 

Taschenrechner aus dem Jahr 1975: PICO PA-80N

Loading

Aus dem Jahr 1975 stammt dieser japanische Taschenrechner. Er wurde von 1975 bis 1976 von der Eduscho – Tchibo Kaffeekette verkauft. Das Gerät trägt die Bezeichnung „PICO“ PA-80N. Genau dieses Modell war auch einst im Besitz meines Vaters und ich war als Kind schon fasziniert von den leuchtenden Siebensegmentanzeigen. Und das war wieder das Problem. Soweit ich mich erinnern kann, war ich etwa im Volksschulalter, als ich das Gerät das erste Mal in seine Einzelteile zerlegte. Das war an sich noch nicht das Problem, jedoch es blieb nicht dabei. Im Laufe der Zeit zerlegte ich den Rechner einige Male. Irgendwann brachen dann Drähte ab und es funktionierte nichts mehr. Wieder zusammengebaut verschwand der Pico dann in einem Kasten und wurde Jahre später von meinem Vater entsorgt. Warum ich den kleinen Rechner immer wieder auseinandernahm und zusammenbaute, kann ich heute nicht mehr sagen. Scheinbar war es das Erfolgserlebnis eines Achtjährigen, nach dem Zusammenbau wieder ein funktionierendes Gerät zu haben – eben bis zuletzt. 🙂 Auf einer Online – Flohmarktplatform habe ich genauso einen Rechner gefunden und das noch dazu in einem TOP-Zustand und noch dazu fast geschenkt. Also musste ich ihn haben…

Pico mit dem Kunstleder Etui
Zu den Daten:
Das Display hat acht 7 Segment Ziffern (Digits), die auf LED-Technologie aufgebaut sind. Um die MikroLED´s auch ablesen zu können sind sie in einem konvex geformten Kunststoff eingebettet. Damit wird ein Lupeneffekt erreicht, der die Ziffern ablesbar macht.
Siebensegment – Anzeige mit 8 Digits

LED´s unter der konvexen Kunststoffvergußmasse
Das Gehäuse besteht aus Aluminium und Kunststoff und hat die Abmessungen inetwa einer Zigarettenschachtel. 8.2 x 5.7 x 2.4 cm. Um den Rechner schonend aufbewahren zu können, gab es ein Kunstleder Etui dazu.
Mainboard des PICO

Angetrieben wird der Rechner von zwei Tripple A (AAA) Batterien, also mit 3V. Korrektur: Die Batterien, die da hinein gehören, müssen die Größe „AA“ haben. (Vielen Dank für den Hinweis an Michael) Optional gab es dazu auch ein externes Netzteil das lt. damaliger Preisliste um knapp 18DM erworben werden konnte. (leider keine Preisinformationen für Österreich)

Netzteilbuchse an der Oberseite
Technisch betrachtet besteht der kleine Rechner aus einer Display-Platine, einem „Mainboard“ und einer Tastaturplatine. Diese Platinen sind untereinander mit einer mehrpoligen Stegleitung verbunden. Diese sollte nicht allzu oft gebogen werden, da dann schnell einzelne Drähte abbrechen…
Aufgeklappte Platinen
Die Displayplatine wird von einem Toshiba T1337 Displaydriver IC angesteuert und der Rechner selbst, ist ein GI C593 (General Instruments) Prozessor, der die Grundrechenarten und Prozentrechnung beherrscht.  Der Prozessor arbeitet mit einer Versorgungsspannung von 15-17VDC und ist imstande Fluoreszenzdisplays direkt zu treiben. Um in dem kleinen Pico Rechner aus den 3V der AAA Batterien auch die 17VDC zu erzeugen arbeitet ein kleiner DC/DC Converter am Mainboard.
Prozessor
Displaytreiber
DC/DC Konverterschaltung für die 17V der CPU
Datenblatt des C593 (Quelle: 1977 Datacatalog GI Microelectronics)
Neben dem Kunstleder Etui gab es auch noch eine Karte mit einer Bedienungsanleitung und einen Flyer. Der war mit Garantiehinweisen und einem Werbespruch bedruckt:
„Der Pico wird für Sie zum unentbehrlichen Rechenhelfer werden. In der Schule, im Haushalt, im Beruf – überall wo es was zu rechnen gibt, ist der Pico schnell zur Hand. Einfach Tasten drücken, und schon haben Sie die kompliziertesten Aufgaben ausgerechnet. So wird Rechnen zum Vergnügen!“(Quelle:Internet)

Retrocomputer in neuer Technik: MIST FPGA

Loading

 

Commodore C16 am MIST FPGA

In den Sommermonaten und vor allem mit meinem kleinen Sohn, ist die Zeit, hinter dem Rechner zu sitzen und über die „Projekt’chen“ zu schreiben, doch sehr dünn gesät. Schon etwas länger beschäftige ich mit den Retrocomputern, wie den Commodore C16, C64, Amiga etc. Mittlerweile ist auch schon eine kleine Sammlung an originaler Hardware zusammengetragen. Um die alten Customchips in den „Brotkisten“ zu schonen, ist es interessant auf alternative Hardware auszuweichen. Für jeden modernen Rechner und auch die kleinen Computer der Raspberry-Foundation ist es kein Problem, einen C64 oder Amiga zu emulierten. Dafür gibt es viel Software (Vice, Yape, Mame, ePSXe, Stella, etc.), die auch ausgezeichnet funktioniert. Bei den Emulatoren wird die Funktionalität der alten Maschinen per Software nachgebildet. Programme und Spiele, die früher per Datasette oder Floppydisk geladen wurden, werden beim Emulator einfach als „Imagedatei“ geladen und gestartet. Das klappt zum größten Teil. Es gibt aber auch Spiele, die so trickreich programmiert worden sind, dass sie das Maximum aus der Hardware herausholen und dafür beispielsweise Bereiche im Speicher für Gamecode verwenden, der für ganz andere Dinge vorgehen war… In solchen Fällen kann es dann vorkommen, dass der Emulator hier versagt.

Noch viel exklusiver und weniger umständlich in Betrieb zu nehmen, um schnell mal einen alten „Rambo“ zu spielen, ist ein Retrocomputer in einem FPGA. Den Elektronikern unter den Lesern ist FPGA sicher ein Begriff. FPGA bedeutet Field-Programmable-Gate-Array. Das Wiederum bedeutet, man hat hier einen Chip, dessen Logikgatter per Softwarebeschreibung erstellt werden. Man stelle sich zum Beispiel einen TTL Baustein 7408 vor. Er beinhaltet vier unabhängige UND-Gatter mit je zwei Eingängen und einem Ausgang. Solche einfachen und viel komplexere Bausteine bilden von der Funktionalität her, die Basis jeden Computers. Solche „Bausteine“ lassen sich auch in einem FPGA erstellen. Man „beschreibt“ quasi mit einer Hochsprache die Funktion, synthetisiert diese und erstellt einen Programmingcode, der im FPGA dann die Gates zu den gewünschten Gattern zusammenschaltet.

HDL nennt man diese „Hochsprache“ (Hardware Description Language). Ein solch ein FPGA enthält nun wirklich sehr, sehr viele GateArrays, die alle zu einer gewünschten Funktion geschaltet werden können. Man baut sich quasi seinen eigenen Chip. Der große Vorteil ist natürlich, dass alle Schaltvorgänge in Echtzeit und je nach Beschattung parallel ausgeführt werden. FPGAs von den Herstellern Altera oder XILINX sind mittlerweile in der Lage im Highspeed Bereich zu operieren mit zig Megagates, IO-Buffers für Singleended- und LVDS Signalen geliefert zu werden.

Mit solchen FPGAs ist es natürlich auch gar kein Problem einen alten 8 oder 16Bit Computer aus den 80igern nachzubilden. Und zwar in Hardware – das bedeutet die Funktion aller Chips die auf einem C64 Board montiert waren (CPU, RAM, PLA, ROM, SID, VIC, CIA ) wird per VHDL beschrieben und  die Gates des FPGA dann so zusammenschaltet, dass er dann sozusagen ein C64 Chip ist, der alles kann was ein echter C64 kann.    

Altera Cyclon III FPGA
Microcontroller Atmel

Ein solches Projekt wurde im Rahmen des MIST (aMIga atariST) realisiert. Die MIST Community hat hier ein Board entwickelt, dessen Kern ein ALTERA Cyclon III ist.  Ein SD-Kartenslot dient als Datenquelle. Über die SD-Karte wird zum einen das FPGA bin-file (also der Core, der den FPGA zum Computer macht) und zum anderen die Daten für den entsprechenden nachgebildeten Computer, wie Spieleimages. Das Management und übernimmt ein kleiner Atmel-Microcontroller. Die Community hat mittlerweile eine ganze Reihe von Rechnerkernen (Cores) gebastelt, die Rechner wie Atari XL, ZX81, ZX Spectrum, C64, Atari VCS, Atari 5200, Apple II, Sega Master System, NES, Odyssey2 und viele mehr nachbilden.

MIST Board Vorderseite

Das Mist-Board bringt eine Reihe von Schnittstellen mit. Eine MicroUSB-Buchse dient als Eingang für die Energieversorgung. Der MIST kann mit einem normalen USB-Handy Steckernetzteil versorgt werden.

MIST Board Rückseite

Zwei 9 polige SUB-D Male-Buchsen ermöglichen das Anschließen der originalen Retro-Joysticks, wie Quickshot etc.  Vier USB-Hostbuchsen, nehmen Datenträger wie USB-Sticks und auch HIDs wie Maus, Keyboard oder auch Game Controller auf. Eine Klinkenbuchse gibt den Ton der Rechner aus und das Bild kommt über eine VGA-Buchse. Hier liegt auch ein kleiner Haken. Denn das Videosignal kommt mit der Frequenz aus der Buchse, mit der auch der originale Rechner gelaufen ist. Wenn ein C64 PAL also mit 50Hz Bildwechselfrequenz arbeitet gibt die Buchse das V-Sync auch mit 50Hz aus. Bei NTSC wären es dann 60 Hz usw. Und das ist schon das Problem. Die meisten neuen LCD Monitore können mit einem 50Hz Signal nicht umgehen. Hier kommt meist eine Meldung wie: „Signal out of range“ Ich habe nur einen alten HP1955 und einen noch älteren IBM Bildschirm zum Laufen gebracht.

MIST – MIDI Buchsen

Wer sich mit Retro Computern und Musik, vor allem mit MIDI beschäftigt, der kann auch mit dem MIST und den Atari ST Sequenzern arbeiten. Das Board hat auch zwei Midi DIN Buchsen.

Wenn man seine SD-Karte nun vorbereitet, also ein Core von GitHub geladen, als core.rbf umbenannt hat, dann gehts auch schon los. Ich habe als Beispiel einen Commodore C16 Core gewählt und als Spiel das Jump an Run Spiel „Big Mac“ als .prg Datei auf die SD-Karte gelegt. Wenn´s auch viele nicht kennen, mein Bruder dürfte sich daran erinnern, falls er sich in den Blog hierher verirrt 🙂 

Commodore C16 BASIC Einschaltbildschirm

Nach dem Startbildschirm des C16, kann mit einem angeschlossenen Keyboard mit F12 per Image Injection das File in den C16-Speicher kopiert werden. Das geht so schnell, dass man nicht merkt, ob zwischen der Enter Taste und dem Ready am Commodore Basic Bildschirm, etwas passiert ist. Mit RUN startet man das Spiel und es kann losgehen 😀

C16/Plus4 Game: BigMac