Archiv der Kategorie: Retro – Technik

Technik vorwiegend aus dem Bereich der Unterhaltungselektronik, Audio und Videotechnik. Reparaturen und Gerätevorstellungen

Herold de luxe

Loading

 

Herold de luxe
Herold de luxe

Diesmal nicht selbstgebaut, sondern den Tiefen der Kellergemächer entrissen: Ein Mehrband- Radioempfänger aus dem Jahr 1960. Ein in Österreich hergestellter Empfänger der Kapsch & Söhne Telefon- und Telegraphenfabriks-AG Wien. Es handelt sich um das Modell „Herold de luxe“.

IMAG1376
Bedienelemente

Nach einem vorsichtigen Hochfahren der Netzspannung über einen Trenn-Stelltransformator zeigte sich schnell, dass das Gerät durchaus noch in Takt ist. Allerdings sind einige Servicearbeiten von Nöten. Im Laufe der Jahre ist die Mechanik des Schaltwerkes schwergängig geworden um muss überholt werden. Ein großes „Muss“ ist auch die Überprüfung der Elektronik, insbesondere aller Kondensatoren.

Natürlich werde ich die Instandsetzung des Empfängers wieder dokumentieren und hier im Blog veröffentlichen.

Zu den technischen Daten:

(QUELLE: radiomuseum.org)
  • Hersteller / Marke: Kapsch, Telephon- und Telegraphenfabriks-AG Kapsch & Söhne Wien
  • Modell:  Herold de Luxe – Kapsch
  • Baujahr: 1960
  • Typ: Rundfunkempfänger (Nachkriegsempfänger)
  • Röhrenbestückung: ECC85 ECH81 EF89 EABC80 EM84 EL84
  • Funktionsprinzip/Aufbau: Superhet Empfänger ZF/IF 480/10700 kHz
  • mit zwei NF-Stufen. 9 FM Kreise und 7 AM Kreise
  • Wellenbereiche: Langwelle, Mittelwelle, Kurzwelle und Ultrakurzwelle
  • Versorgungsspannung: 110V, 125V, 150V, 220V,  240Volt
  • Lautsprecher: Dynamischer Permanentmagnet-Ovallautsprecher
  • Holzgehäuse mit den Abmessungen: (BxHxT)490 x 287 x 230 mm
  • Nettogewicht9.1 kg

     

>

Multimeter analog

Loading

IMAG1347_1
Unigor 6e (ca. 1970)

Ein guter Bekannter der älteren Technikergeneration ist sicherlich das analoge Vielfachmessgerät des Herstellers Unigor. In diesem Fall handelt es sich um das Modell Unigor_6e aus den 70er Jahren.

Ein Auszug aus dem Vorwort des Bedienungshandbuches:

Das elektronische Vielfachinstrument Unigor 6e verbindet die Vorteile der klassischen Meßtechnik mit denen der modernen Elektronik.

Es wurde speziell für Messungen auf dem Gebiet der Elektronik und für all jene Anwendungsfälle entwickelt, bei denen praktisch leistungslos gemessen werden soll. Die hohe Empfindlichkeit wird mittels eines batteriebetriebenen Transistorverstärkers erreicht.

Der Feldeffekt-Transistorzerhacker für Gleichstrommessungen und die mehrfache Gegenkopplung garantieren eine hohe Stabilität und vernachlässigbare Drift. Der große Meßbereichsumfang und die hohe Genauigkeit von 1% bei AC und DC, ermöglicht den universellen Einsatz im Rundfunk- und Fernsehservice in Prüffeld und Laboratorien.

Das „6e“ bietet insgesamt

  • 54 Gleich und Wechselstrom-/Spannungsbereiche
  • 13 dB-Bereiche
  • 12 Widerstands- und Kapaziätsbereiche
  • 2 Temperaturbereiche
IMAG1350_1
Messbereiche

Die elektronischen Baugruppen des Messgerätes werden von vier 1,5Volt Batterien gespeist und nehmen einen Strom von ca. 2.5mA auf. Der Arbeitsbereich der Elektronik liegt zwischen 4Volt und 7Volt. Die Batterie wird mit dem Drehschalter (der auch gleichzeitig den R,C Justierknopf darstellt) eingeschaltet. Zur Überprüfung der Batteriespannung ist am Messbereichsschater eine Kontrollstellung vogesehen.

Das Unigor 6e bietet auch eine Vielzahl von Schutzeinrichtungen und ist daher vor Beschädigungen durch falsche Handhabung und Überlast geschützt. (Ich kann mich aus meiner HTL Zeit allerdings auch ganz gut erinnern, dass das nicht immer der Fall ist 😀 )

Das Unigor 6e besitzt eine elektromechanische Schutzschalterfunktion. Deren Relais spricht bei Überlastungen mit Gleichstrom und Wechselstrom an und benötigt keine Hilfsenergie. Der Schutz bleibt daher auch bei ausgeschaltetem Batterieschalter oder leerer Batterie voll wirksam. Das Wiedereinschalten bei bleibender Überlast wird durch eine spezielle Schaltmechanik verhindert.

Weiters bieten Schmelzsicherungen einen Schutz bei den höheren Strombereichen, um bei Kurzschluß oder vor dem Auslösen des Schutzschalters anzusprechen.

Gegen Überspannungen an den Eingängen befinden sich Spannungsableiter an den Eingangsklemmen, deren Überschlagspannung niedriger als die der Innenschaltung ist.

IMAG1349_1
Skalenblatt des Unigor 6e

 

TEDDY automatic

Loading

IMAG1321Aus den Jahren 1970-1972 stammt der Radioempfänger TEDDY AUTOMATIC 100 vom deutschen Hersteller ITT – Schaub Lorenz. Es handelt sich dabei um einen Multibandempfänger, der die Wellenbereiche Langwelle, Kurzwelle, Mittelwelle und UKW abdeckt.

Er ist ausgelegt für Netz und Batteriespannung (110-127V/220-240V und im Batteriebetrieb für 4×1,5 Volt Zellen der Größe AA).

IMAG1323Die Ausgangsleistung beträgt 0,8Watt und wird mit einem dynamischen Ovallautsprecher übertragen.

Der technische Aufbau lt. Hersteller besteht aus 6AM Kreisen und 9FM Kreisen. Das Empfängerprinzip ist ein SUPERHET mit ZF 460kHz und 10,7MHz. Das Gehäuse besteht aus Kunstoff (Thermoplast) und hat die Abmessungen von 215x127x70 mm bei einem Gewicht von 1,2kg.

IMAG1324
Anschluss für externe Quellen
IMAG1325
Umschalter für Empfangsbänder

 

 

Die 80er und der Watchman

Loading

Im Jahr 1985 bringt die Firma Sony ein kleines, kompaktes und vor allem mobiles Fernsehgerät auf den Markt. Den Watchman Voyager FD20-AEB. Es wurde so konzipiert, dass es überall verwendet werden kann. So zum Beispiel im Auto, im Urlaub, einfach überall unterwegs.
Es handelt sich dabei nicht um einen TV mit LC-Display, oder TFT, oder LED Display. Nein. Der TV bringt das Bild mittels einer Elektronenstrahlröhre (Braun’sche Röhre) zum Auge des Betrachters. Und das nicht in der brillanten Farbvielfalt und Auflösung heutiger Empfänger, sondern in Schwarz/Weiß (BW).
 

Die Bildschirmdiagonale von 4,7cm kann mit Hilfe einer Aufstecklupe noch ein wenig vergrößert dargestellt werden.
Der Empfänger ist ein Multinormenempfänger, der die europäischen Fersehnormen abdeckte.

Abgestimmt wurde manuell mittels eines seitlich angebrachten „Drehrades“. Die Empfangsbänder VHF/UHF kann man mit einem Schiebeschalter wählen. Natürlich ist damit auch nur der analoge Fernsehempfang möglich.

Bildquelle Zeichnung: Frank’s Taschenfernseher.de

 

 

 

Einstellungen wie Helligkeit, Kontrast und auch der Bildfang, sind an der Unterseite des Gerätes durchführbar.

im Bild: Tunermodul und Flachbildröhre

Die Stromversorgung kommt von vier 1,5 Volt AA Batterien oder von einem Netzteil. Bei einer Leistungsaufnahme von 2 Watt ist bei Batteriebetrieb relativ schnell Ende. Die Hochspannungserzeugung und Heizung der Flachbildröhre ist hier wohl einer der grössten Stromverbraucher.

Der Aufbau der Platinen ist sehr diskret. Es gibt kaum integrierte Schaltungen. Links im Bild ist das große Tunermodul zu erkennen. Die Versorgung mit Signalen erfolgt ausschliesslich über eine Teleskop Stabantenne. Ein eingebauter Lautsprecher sorgt für den Ton. Wahlweise ist auch eine Klinkenbuchse zum Anschluss eines Kopfhörers eingebaut.

heute ist nur mehr Rauschen zu empfangen

Video8 zu Digital

Loading

 

Jetzt, während der Feiertage, ist ein wenig Zeit, die auf Magnetband gespeicherte Vergangenheit in Bild und Ton auf neue Medien zu kopieren.
Die Videoaufzeichnungen der beginnenden 90er Jahre fanden noch analog auf 8mm Bändern statt. Nein, nicht Super8 (das war ja der Film), sondern auf Video8 bzw. HI8 (die qualitativ bessere Variante – vergleichbar mit VHS und SVHS, wobei das „HI-“ bzw. das „S-“ technisch durch eine getrennte Aufzeichnung des Y- und C- Signals realisiert wurde.  (Y=Luminanz, also Helligkeitsinformation und C=Chrominanz, also Farbinformation). Die Aufzeichnung selbst, fand auf Magnetband in Schrägspurtechnik statt (Wie auch bei VHS, U-Matic, Betamax, BetaCam, Video2000 …). Nur dass das Band eben eine Breite von 8mm hat und nicht 1/2″ oder 1 Zoll, wie bei anderen Systemen. Auch der Ton wird im Schrägspurverfahren aufgezeichnet.

Um nun die alten Aufzeichnungen in ein heute übliches digitales Format zu bekommen, benötigt man folgende vier Dinge.
Zuerst einmal das Band (Kassette) mit den vermutlich spannenden Inhalten vergangener Tage.
Als nächstes ist ein Abspielgerät von Nöten.

Hier habe ich mir einen damals professionellen HI8 Recorder geholt, mit dem das Wiedergeben der Bänder klappen sollte. Der Recorder nennt sich EV-S9000E von Sony und kam nach fast zwanzigjähriger Pause wieder ans Netz. Nach nur kurzer Zeit war der Geruch von fauligem Fisch wahrzunehmen. Ein Indiz, dass hier einige Elektrolytkondensatoren der SMD Bauform nicht mehr ganz in Ordnung sind. (Ein bekanntes Problem bei Geräten höheren Alters und Elkos kleinerer, kompakter Bauform. Nichts desto trotz, ließ ich den Recorder am Netz und machte mich schlau, welche Funktionen aufgrund der zahlreichen, nicht mehr wertgenauen Bauteile ausgefallen sind. Also das Netzteil startete und liefert zumindest die wichtigsten Versorgungsspannungen. Die Floureszenzanzeige ist ausgefallen. Die 60V Anodenspannung scheint hier zu fehlen. Egal. Das Bandlaufwerk funktioniert. Also das Analoge Signal zum Computer bringen.
 
Hierfür habe ich mir einen Video zu USB Converter von elgato geholt. Schnell die nötige Software installiert und das erste Band eingelegt und „Play“ gedrückt. Das Bild war jedoch eine Katastrophe. Alle Zeilen waren total verzogen und versetzt. (So als ob die Zeilenfrequenz nicht stimmte). Also habe ich, bevor ich wieder alles zusammenräume und mit dem Recorder in der Werkstatt verschwinde, nochmal ins Config-Menue des Recorders gesehen. Dort habe ich alle AUTO Optionen auf manuell geschaltet, die Fernsehnorm auf PAL geknüppelt und zu guterletzt auch den TBC (TimeBaseCorrector) ausgeschaltet. Und siehe da, der TBC ist auch hinüber. Eigentlich soll er ein absolut stabiles Zeitsignal für die Videozeile generieren, doch mit defekten Elkos ist das nicht mehr möglich.
Da ich keine zehn Bänder zu digitalisieren habe, sollte der Recorder noch durchhalten…

2,5 Zoll Früher und Heute

Loading

Bevor sie im Archiv landet, muss ich sie hier auch unterbringen…
Es handelt sich um eine Festplatte aus den 90er Jahren (genau 21.10.1991) – und zwar um eine 2,5 Zoll Platte von Seagate mit der sagenhaften Speicherkapazität von 85.3 MB (ja MEGABYTE). Im Vergleich dazu eine 160 GB (Gigabyte) Platte von Fujitsu aus dem Jahr 2007.

Die Seagate Platte mit der Bezeichnung ST-9096 war in einem Commodore Amiga 1200 verbaut. Darauf hatte das komplette Amiga OS 3.1 samt reichlich Anwendungen Platz. Diese 85MB konnte man damals gar nicht so einfach vollbekommen.
 
Zu den technischen Daten: Will man sie heute formatieren, so sollte man folgende Parameter wissen: 980 cyl, 10 heads, 17 sectors ergibt eine Kapazität von 85.299.200 byte. Die HDD hat eine Leistungsaufnahme von 2W im Schreib-/Lesebetrieb und 1W im Idlemode. 300mW verbraucht sie immer noch im Sleepmode.
Interessant ist vielleicht auch noch der Größenvergleich zu aktuellen Platten.
Das Interface entspricht dem IDE Standard (Integrated Drive Electronics).
Größenvergleich
 /- 44-pin I/O Connector (* see below)
                                      |                     o o
                                    ::::::::::::o::::::::1  o o
                               =P=W=A===========#==================
                                                |           | |
       pin-20 removed for keying ---------------/           | |
                                                            | |
                                                            | |
 Drive is Master, no Slave drive present ------------------ 0 0
 Drive is Master, Seagate Slave drive present ------------- 1 0
 Drive is Slave to another ST9xxxA/ST9xxxA Master --------- 0 1
 Reserved Position (Do Not Use) --------------------------- 1 1

 * Drive uses +5vdc power supplied to the drive
   via the interface connector. The drive does
   NOT make use of a +12vdc power line.
   pin-41  +5vdc (Logic)
   pin-42  +5vdc (Motor)
   pin-43  Ground
   pin-44  Reserved